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RESPONSE SURFACE DE'TE NATIONS IN ESTOBISU

THE PRELABILIT OF ONE-SROT IM4S

Nicholas T. Wilburn

DA Task No. 1G6 92001 A 053-02

Abstract

In the past no satisfactory methods have been available for deterining
the reliability of one-shot items where extremely high reliabiiity is
required. This has been detrimental to the develotent of one-shot,
automatically activated batteries for missile applications. The lack of a
satisfactory method, one which will permit determination and statistical
analysis o the failure points of the battery with respect to the specified
environmental stresses, has been compensated by reliability programs based
on designing the batteries to meet environmental stresses with large safety
factors.

The response surface determination (RSD) method is proposed for the
determination of mean failure points and reliability tolerance limits for a
battery design with respect to operational environmental conditions, thermal
and dynamic. It provides for the a,alysis of the battery responses as a
function of two or more environmental stresses acting simultaneously, thus
affording information on the effects of interactions between forces on the
battery performance. Dnphasis is placed on providing a maximum of reliabil-
ity prediction data with small test sample sizes.

U. S. A= ELECTRONICS RESEARCH AIM DE OHF2lT I3B0RATOR1S
FORT MOM=, NEW JEREY
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RESPOSE SURFACE DEOTRVa=0NS IN ESTABLISRI
TO ML I=T OF ONS-SHOT TT4S

InODUCTION

0his report deals with a new procedure for establishing the reliability
of one-shot items under simulated operational environwnts where extremely
high reliability is required. One~shot items are herein defined as components
or equipments which are expended in use and which, prior to use, do not lend
themselves to non-destructive checkout tests from which their probability
of successful operation or reliability can be inferred. The military one-
shot items of perhaps the greatest interest to USAELROL at present are the
automatically activated battery power supplies which have been developed
for g=-dance aftd control functions in a wide range of missiles. High
reliability standards have been established for these batteries since
failure in any sense will aestroy the effectiveness of the missile.
Unfortunately no effective and practical method has been available to date
to determine the probable failure rate of a battery design under simulated
missile envirotmental conditions. This has made it necessary to use
compromise measures to achieve high engineering confidence in the reliability
of the battery such as designing it to meet environmental requirements with
high safety factors beyond the specified requirements.

The environmental safety factor concept has resulted in a conmendable
history of high reliability in the field for many missile batteries.
However it has been challenged from many sources on the basis of unnecessarily
increasing the weight, size and cost of the batteries. The concept involves
proving the battery design by testing relatively small samples under each
critical environmental condition where the g force for shock, vibration,
acceleration, spin, etc. is held at some arbitrarily chosen multiple of the
required dynamic g force, normally four times. Failure of the battery design
in any manner under a 4X environmental force results in redesign until the
4X capability has been demonstrated. Although statistical statements cannot
be made as to the rrobability of failure at the required g level, the concept
does provide for a high engineering confidence in the design.

Other approaches to battery reliability have been attempted including
statistical ones such as the evaluation of the variability of the battery
performance .aremieters [service life, activation time, maximum voltage,
minimum voltage under heavy load pulses, etc.] under bench conditions at the
required temperatures or under the specified dynami g forces or even, in one
program, under 4X g forces. The statistical approach used is to assume a
normal distribution for the battery responses and then to evaluate each
battery test sample for the mean value and the standard deviation for each
response. The number of standard deviation units e.g. between the mean
service life and the required service life must exceed a specified
reliability standard, or K factor, which is related to the sample size, the
desired mauim failure rate, and the confidence level used in making the
reliability statement, Any program of this type has certain basic disadvan-
tages. No real insight is gained into the effects on the battery performance
of the thermal and k c environmental forces, unless this is sidestepped
by testing at the 4X levels. Even under this condition the testing is done
with one environment at a time, thus revealing nothing e s to the potentially
significant effects of interactions between the environmental variables.



it was recognized for some time that the environmental Variables have
a major effect on the reliability of a battery and that some test method
was required to study the battery performance as a function of these
environments treated as continuous variables. In fact the goal was to
apply the same type of statistics as discussed before to demonstrate that
the mean failure point of a battery with respect to an environment would be
at least K standard deviation units above the required stress level. A first
step in this direction was made in 1961 by the developent of a step-Stess
technique3 which permitted these determinations. The method had ertain
basic lamitations which prevented its wideScale application. it assumed
that the test responses were normally distributed. It provided for the study
of only one environment at a time. its use required that the battery be
tested at stress levels high enough to induce failure. This proved possible
with the thermal envirotments, high and low temperature, but it was rapid1y
shown that the method was not generfaly adaptable to dynamic environments
since practical test equipment in many if not most cases could not induce
failure.

The RED method has been developed at USA=LRDL during the past two years
to overcome these disadvantages. Although it has not been applied as yet
in an actual reliability program, it is believed capable of providing the
desired environmental capability data for a given battery design. Determin-
ing the mean minus IM reliability tolerance limit should be possible without
testing to failure. Within the limits of practical test equipment, the
method should provide for the testing under two or more different environ-
mental stresses acting simultaneously, thus affording some of the desired
insight into potentially destructive interactions between environmental
stresses. instead of merely assuming normal distribution of responses,
the method provides a test which, though not conclusive, at least provides
assurance in applying normal distribution statistics in making reliability
predictions.

DISCUSSION

The Response Surface Determination (R$D) Method

The basic techniques of the RSD method are based on conventional design
of experiments procedures which are thoroughly discussed in the literature.
These procedures urovide for the study of the response of an item as a
function of two or more continuous variables acting simultaneously. They
are normally used to provide information as to the settings of the variables
to ield an optimum condition for the response.

Translated into battery testing terms, the continuous variables of
interest are the thermal and dynamic environments to which the battery is
exposed in the missile operation. The responses to be evaluated are the
battery's critical performance parameters: activation time, service life
or capacity to minimm vQltage, ad m4dmn and minimum voltages under
continuous or plsating loads. Each of these reponses are evaluated
separately from the same test data and individual reliabilty predictions

are made for each response.
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The conventional design of experiments procedures give an indication of
the mean or average response, but they do not provide for tolerance intervals
based on reliability standards. The literature only covers the simple case
of tolerance intervals around a linear regression line involving one
variable. There is no practical technique given for curved functions
involving two or more variables. Straightforward techniques were therefore
derived for this and these, together with the design of experiments procedures,
constitute the PSD method. This report is concerned entirely with the study
of the battery response as a function of only two continuous variables since

present testing equipnent for the batteries pernits only two environments,
one thermal and one dynamic, to be applied simultaneously. For one-shot
items capable of testing under more than two environmentssimultaneously,
or with the advent of more sophisticated test equipment, the techniques as
given will have to be expanded. This is entirely possible and consistent
with conventional design of experiments procedures, though beyond the scope
of this report.

The TSD theory Vill be developed through a series of illustrations.
The mechanics of the operations will be developed later through a series of
examples. Figure 1 shows a three dimesional space generated by the Y or
response axis (e.g., battery capacity), the Xi axis (e.g., high temperature
as a continuous variable) and the 2 axis (e.g., vibration g force, also
as a continuous variable). Point A, the intersection of the axes,
represents the combined requirement point, e.g., 10 seconds capacity at a
10 g vibration force at 165*F. The objective is to determine that the
battery has the desired degree of reliability with respect to capacity at
point A and also to determine how far along the X axes the given reliability
standards ill be met, and also for any given combination of XI and X2 above'
the requirement levels.

The first step before exploring the three dimensional space is to
determine if the battery design will meet the reliability standards at
point A (Figure 2). A sufficient sample is tested at point A, 10 g and
165*F, and the data is analyzed to determine the mean capacity Y and the
standard deviation, or measure of variability of individual points around
the mean. A test is made to see if it is reasonable to assume that the
points are normally distributed. (The techniques for all of these procedures
will be explained in detail in the later experimental section). if the
assumption of a normal distribution can be made, a normal curve can be
superimposed on the Y axis, laid off in standard deviation units, and the
y - 1 capacity value can be determined, where K represents the reliability
standards -2 AnyY - 10 value over 10 seconds indicates adequate reliability
at point A.

As shown in Figure 3, the X test design is then laid out. One or two

batteries are first -run along the X! and X2 axes to obtain an approximate
idea of the mean failure temperature and g force levels. As will often
prove the case, the upper limit of the vibration equipment capability will
not induce a failure. In this case this limit, hereafter referred to as
the test equ'pment capability or TEC, will form the X2 upper boundary. Some
temperature B will form the boundary along the X, axis. Points C and D are
established at the midpoints of the A-B and A-TEC intervals. This is a 32
factorial design with nine test points, eight of which r n tO be investi-

gated. Any appropriate scale can be used along each axis as long as equal
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increments are held. In the case of vibration, asatsing that the TEC is
40 g, the midpoint D can be 25 g with a linear scale or 20 g with a
loga-ithmic scale, equal increments in both cases. A*sifing B to be 205F,
C becomies 1850.

Two tests are then conducted at each of the eight new test points
giving capacities, Y responses, as shown on Figure 4. The test data points,
as shown, may be considered typical of what might be expected if the battety
response is inf luenced by the enviroments. 1ookng at the Xl points at
10, 20 or 40 g the dropoff or regression of Y with respect to X1 definitely
does not appear to be linear but appears to suggest a mathematical relation-
ship involving second order, quadratic, terms. Similarly with the X2
points. The depression in the responses with increasing levels of X, gets
more pronounced at higher levels of X. The same applies in the other
direction. This is the interaction effect which means that the effect on
the response of one variable cannot be stated properly without referring to
the level of the other variable. Looking at the points as a whole it can
be seen that acuxvd response surface can be fitted through the points
starting with YA and dropping off with increasing levels of X1 and X2 .
This surface is shown on igure 5.

The response surface does not fit uniformly through the test points
but instead has a unique property. It is technically knwn as a least
squares regression surface, which means that if the vertical deviations of
the 18 test points (doubling YA) from the surface are squared, then the sum
of these squares will be at a minimum value for this one surface. It is
based on a two variable, second order mathematical model of the form:

Y = b0 + blX1 + b 2 X2 + bllXl 2 + b2X 2
2 + bl2XlX2

where the coefficients are derived from analysis of the 18 test points.
The XIX2 term represents the interaction. The response surface is an
estimate of the mean value of Y for any settings of X and Yp throughout
the test area. Therefore the intersection of the surace with the 10 second
Y plane is the mean failure contour which represents an important estimate
of the population from which the battery sample was drawn. The estimate
is that if additional samples were taken, half would pass and half would
fail at any X, and X2 settings along the contour. But this is of little
value in predicting reliability of the battery design. What is required
is another surface Y - KS below the response surface, the intersection of
which with the 10 second plane will be the reliability boundary representing
the highest values of settings of XI and Yo at vhich the reliability
standards can be met. A parallel surface arawn through (Y - KS) A would not
suffice since there is no reason to assume that this estimate of variance
applies throughout the whole test region. Likewise it isn't known that the
variance is uniform throughout and that the responses are normally
distr buted around the response surface throughout the whole test region.

An indication of a normal distribution had been demonstrated at the
10 g, 165? point. A similar accumulation of data is not available elsewhere
in the test region to make an additional test for normality. Therefore a
basic assuption is made that if normality can be assumed at the combined
requirement point, it can be assumed throughout the entire test region. It is
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recognized that if departures from normality occur, they will influence the
position of the reliability boundary, possibly weakening the value of these
predictions. However they will not weaken the value of the prediction at
the combine6 requirement point, the most important of the reliability
predictions. The prediction as to how high we can go in temperature ad
still achieve reliable operation may be influenced slightly, but this is not
as critical a prediction. The assimtion of uniform variance can be tested
for with the available data. This is done by determining the variance
throughout the test area (except for the combined requirement point) and
comparing it to the variance previously determined at the combined requfrement
point. If these two estimates a the variance cannot be prved to be
significantly different, then unifort variance can be assmned by inference,
at not too great a risk. If uniform variance can be assumed in this manner,
the two estimates of variance can then be pooled to give a coon estimate,
based on all of the test data, of the variance ana from this of the standard
error throughout the entire test region. This latter estimate, multiplied
by K, is then used to establish a Y K 1 equation for a reliability boundary
surface parallel to the response surface as shown in Figure 6.

The reliability boundary surface is drawn parallel to the response
surface, Y - IS below it. The intersection with the 10 second plane is the
required reliability boundary. The basic estimate now made from the sample
is that the reliability standards will be met at any combination of X and

to the left of the reliability boundary including, of course, the combined
requirement point of 165-F and 10 g. No statement should be made, by
extrapolation of the reliability boundary, of how many g it would be possible
to go to at 165 F and still meet the reliability standards. The only valid
statement of this is, in excess of 40 g. The interrelation between the X
and Y axes should be noted. Predictions can be made for different settings
of Y as.well. An U- second plane could be added, for example, and the
intersection of this plane with the reliability boundary surface would
indicate the maximum settings of X1 and X2 at which 1 seconds of operation
could be achieved in accordance with the same reliability standards. A
limitless amount of reliability prediction data could actually be obtained
once the reliability boundary surface has been determined, a further
advantage of this approach to reliability.

The problem arises as to how positively the reliability predictions can
be made. If there were no doubt at all that the responses were normally
distributed about the response surface throughout the entire test region,
and that the variance were completely uniform throughout the region, then
there would be no hesitancy in stating that we are, for example, 95%
confident in predicting that no more than one battery in a thousand will
fail when tested at 193F while undergoing a 10 g vibration. However the
sample on which this estimate was based was also used to provide assurance
in ass iing normal distribution and uniform variance. It follows logically

that the size of the sample must bear heavily on the faith in the prediction.
Further coments will be made on this subject in the Conclusions section of
this report once the mecbaics of the SD method bave been explained andthe area of sample size has been explored. *

Experimental Procedure
The preceding section has attempted to explain the basic principles of

the 16D method and general considerations goVerning its use in a practical
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A

test program for determing the operational reliability of one-shot items

such as battery power supplies for missiles. However, in this area, as in

most in the field of applied statistics, no intuitive understanding is

possible for the practicing engineer without detailed eiples to study.
Extensive examples have been prepared. These will be introduced by taldng

what is believed to be representative test data which will be treated,

following the RSD method, in a step by step fashion through to the final

reliability conclusions. Full details of all calculations are given in

sequence in Appendix I.

Among its other requirements, a battery is required to deliver a
minimm of 10 seconds service life within specified voltage tolerances at a
specified madimn temperature of 165 0F, while being subjected to a
sinusoidal vibrational force of 10g throughout the specified frequency
range. It is desired to demonstrate tbat the battery design has a
reliability, or probability of successful operation, of a least 99.9%
expressed with a confidence level of 95%, i.e., admitting a chance of only
one in 20 of stating that the battery has this reliability when, in fact,
it does not. it is also desired to know the ma3dsnu temperature at which
the battery will operate reliably when being vibrated at 10 g, and also the
maxim g force to which the battery may be subjected while still main-
taining 95% confidence in predicting that only one battery out of a
thousand will give less than 10 seconds of operation when discharged at
165 'F. Out of the total quantity of batteries available in the qualification
test lot, it is desired to demonstrate the reliability with as small a test

sample as possible to assure sufficient batteries being available for the
study of other environmental variables which may prove to be more detrimental
than the present high temperature-vibration ccbination. As a starting
point, a small test sample of 15 is drawn at random frm the lot.

Ste 1. Seven batteries are selected for discharge test at the

composit requirement point of 165-F (X1 ) and 10 g (X2 ), leaving eight for
later exploration of the other eight points of the XI, X2 space of the 32

test design. The batteries are tested one at a time by stablizing at 165"F
and then quickly removing them from the ambient, mounting them on the
vibration eqUapent, activating and dischargJng them before any cooling
effect takes place (or with appropriate temperature monitoring techniques
to assure accurate temperature control). The batteries yeld the follo-in
service tines in seccnds (Y responses) to mnion voltage:

15.74
15.63
14.4.1
i6.61
15. Li7
14.51
18.79

Ste 2 The results are analyzed (Appendix IA) for the mean capacity,
l5.~e~85i , and the standard deviation, l.. seconds. The reli ablity

dafiu K factor for a sepLe of size N=7, 99.9% reliability, and 95%

12



confidence level is 6.062. Therefore, the critical Y - KS value is 15.88 -
6.061 x 1.488 - 6.86 seconds. This is well below the 10 second requirement.
This indicates that either the battery design is basically ureliable or
that perhaps the sample size was too small to allow the design, if good, to
reveal itself as such. This latter view may be considered valid since the
primary objective is to concede the unreliability, and to then search for
reliability tolerance limits below the requirement levels, only when
convinced that the reliability standards canot be met. Evidence for such
a decision may be based on trends in the Y - KS- level with additional
testing, up to a practical limit of, for example, 20 or 25 units. Vhis
approach will now be explored for the present example by testing additional
rand=lIy selected units one at a time and observing the trend in Y - KS with
each sample as tested. The following results are obtained:

. . . .. ------ . . .. . . -

-14.4 15.70 5.66 8.74638 7.32
9 17.66 15.91 5.414 1.526 8.26 7.65
10 16.43 15-97 5.203 1.442 7.50 8.47
1-116.38 16.0 5.036 1.380 6.95 9.05
12 16.74 16.06 4.900 1.333 6.53 9.53
13 15.61 16.03 4.787 1.282 6.14 9.89
14 14.33 15.91 4.690 1.313 6.16 9.75
15 17.52 16.02 4.607 1.332 6.14 .88
16 16.04 16.02 4.534 1.287 5.84 10.16
17 17.73 16.12 1 4.471 1.313 5.87 10.25

Graphically, the trend is shown in Figure 7. In this example, the trend
is quite clearly upward due to a slight increase in Y and a definite decrease
in S. The testing is stopped according to an arbitrary rule that two
successive Y - S values above the capacity requirement will establish the
design reliability with an upward trend such as this. The reduction in K
with increasing sample size is, of course, a factor in the increase of Y - KS,
but not a significant one if the design actually had no chance of establishing
itself. To indicate this, assume that Y and S remained at the N = 7 levels
of 15.88 and 1.488. The increase in Y - KS with increasing N is as shown
by the lower line which eventually reaches 10 seconds at N = 35. In practice,
the existence of an upward trend, when testing up to a practical limit of
20 or 25 units, should be judged by an apparently significant difference in
the two lines, as shown by the shaded area. With an inherently unreliable
design, testing could be stoed presumably after a total N of 10 or 15.

In any case, if the required Y - IM value is not reached by N = 20 or 25,
testing is stopped and the response surface test design is then centered on
the Xl, X2 requirement point.

SteR Having judged the battery design to have adequate reliability
at th"e i 2 requirement point, the next step is to make a determination of
the approximate normality of the distribution of the individual test result
points about the mean value of 16.12 for N = 17. This is done by plotting
the cumulative distribution of the sample responses on arithmetical
probability paper and observing if an approximate straight line is formed

by the points, particularly in the range of P = 10 to P a 90. Calculations
for the plotted points are given in Appendix 1B. The plot is given in
Figure 8.

13
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The points are noted to fall along a straight line very well. A
straight line is the plot one obtains when plotting the cumulative
distribution of a large or infinite sample from a known normally distributed
population. Therefore, it is highly probable that the test sample was
drawn from a normally distributed population. If the population were not
normally distributed, in which case it would plot out as some curved line,
then the probability Is that the test sample plot would deviate from the
straight line.

This test is regarded as an empirical indication of the suitability of
assuming a norma distribution of individu Y responses about the mean
value at the combined Xi, X2 requirement point. laving satisfied the
assumption at the most important point of the X-, X space, normality is
now assumed throughout the entire test range of the-1, X2 space, recognizing,
of course, that any departures from normality may have an influence on the
eventual estimates of the battery reliabity capabilities along the X and
X2 axes, but not on the estimates in the region close to the X, X2 require-
ment point.

Ste- 4 H Raving demonstrated reasons for assuming the reliability and
the no y at the combined X-, X2 requirement point, and having obtained
an estimate, 16.12, of the popuftion mean and an estimate, 1.725, of the
population variance (S2) at that point, the test design to explore the Xl,
X2 space will be established. This will be a 32 factorial design with its
lower boundaries established by the X and X2 requirement levels. The upper
boundaries will be established, as ex-lained in the previous section,

preferably at an estimate of the mean failure point but, where this lies
above the TEC level for a given environment, then at the TEC level. In this
example, let it be assumed that the mean failure point at X2 = 10 g has been
estimated at 205 F. Let it also be assumed that the mean failure point at
165*F is in excess of 40 g, the vibration TEC. Therefore, the test design
is established with X1 limits of 165*F and 205OF and X2 limits of 10 g and
40 g. The intermediate X value is 185*F. The intermediate X2 value,
ins+ead of being (0 + 1(0/ = 25 g, is set at 20 g to illustrate the technique
of transforming a variable, in this case, on a logarithmic basis in which
case 10 to 20 and 20 to 40 g represent equal increments along X. Coded
values are assigned to the X aues as -1, a levels. These
coded values are of the utmost importance for keeping calculations as simple
as possible. All equations and expressions from now on in this example will
be based on the coded values. Thus, the combined X1, X2 requirement points
will be referred to aS (-, "i), the 185 .T, 40 g point as (0,1), etc. Based
on the above, the test design is as shown in Fig=re 9.

Step 5. Tests arheut eight p s of the design
otheF"F1 -- 1a, - ) The resuts arc as fofhoes:

16



Desi' on esne

-1 0) 16.0

0 0) .12.86
15 7

The responses, shown~ on the test design, are as follows, With the 16.12
mesa value introduced for the (4, 4l) point-

The responses indicate potentially significant effects on the response
with increasing stress levels of Xand X2- The coefficients are obtained
(Appendix IC) for the two dimensional, second order mathematical model for
the response surface:

Y w 13.52 - 3.67X 1 -l67-t2 - 0-76X1
2 - 0.20)V - 1.13X1 X2

An analysis of variance (Appendix ID) is nowv conducted to test the
equaWtion. Since the tests were not replicated (repeated) at the eight test
point s, no measuve of the experimental error ca -n be made and therefore no
measure of the "lack~ of f it" of the model to the data can be made. The only
important test of the data that can be made is the determination of whether

* ~or not the second order coefficients, bl, b, and b1 2, are signiiat
it is seen from the analsi ofvaiance tbatit cannot be concluded that
the quadratic components are significantly differen fro eo hrfr

* it my be concluded that a linear model of the form

Y w bo + b1X,~ + b2XA

would suffice. However in this case such a model is not fitted because

17



there is reason to doubt, for theoretical reasons, that the quadratic terms
are not significant. Therefore the test design is replicated at the eight
points (except for (-i, -1)) to check this as well as to check the
experimental error and the "lack-of-fit" term. The adAditiona- test results,
added to those previously determined, are:

X I ,
Design Oiia elct

Point Re6os ~ ~Y

X, x 2

0 o, i) 16.07 16.55

(4 )16.99 15.79
( O, O) 12.86 15.84

)15.76 15.09
321.22 11.05

i 1 6.43 6.2

The average responses, shown on the test design, are as follows with
the 16.12 mean value again introduced for the (-i, -i) point,

2I 16.39 14.35 8.96

The coefficients are obtained (Appendix IE) for the two dimensional, second

order mathematical model based on the replicated test data:

Y= 14.33 - 3-7oX - 1.70  - 1.65X1 2 - 0.60X 2 - 0.92X

An analysis of variance (Appendix IF) is now conducted to test for the
significance of the quadratic ccmponents, b , b and b . Due to the
existence of the extra test data, it is posIs- le-to divil the residual
sum of squares into two parts, that due to experiental error and wbhatever
is left which is called the lack of fit term, a measure of the inability
of the mathematical model to fit the test data.

It is found that the quadratic terms are signi ficant and that the lack-

of-fit- term is not significant. Therefore the =mtb tical model is
accepted. as an aequate Interpretation of the e 1ntal data.



steg-6. It is now necessary to study the variance throughout the test
Spaceandto compare it to the variance at the (41, -4) requremnt point.
The variance is determined (Appendix IG) by siing the squares of the
differences between each of the 16 test results and the Values predicted at
the test points from the equation. The variance is found to be 1.00893,
which is to be compared to the variance estimate of 1.72456 found for the
17 results at (-1, -1). The test region variance, 1.00893, is based on
N - 5 = 1 degrees of freedom. The (m1, -1) variance was based on N - 1 =
17 -1 = 16 d.f. The F" 16 ratio - 1.00893/1.7456 & 0.59. This ratio
falls within the limitS 6f F.65, (3 of 2.94 and of4 -1, d.fF.95 .f.

of 0.302. These are the 95% level of significance limits of an F test5 for
determining acceptance or rejection of the hypothesis that there is no
significant difference between the two estimates of variance, In this case
the hypothesis is accepted that there is no significant difference between
the variance at (-i, -4) and the variance throughout the remainder of the
test area. It may therefore be concluded by inference that there is a
uniform variance throughout the entire test region. The two estimates of
Variance are then pooled to give an estimate of S, the standard error
throughout the entire test region. This value, from Appendix I, is 1.197
seconds.

_SteP 7. The total sample size used in this exploration of the X1 X2
space was 17 at (-i, &1) and two at each of the other eight points. Of
the starting 33 degrees of freedom, six Vere used in establishing the
coefficients of the mathematical model, and the remaining 27 for establishing
the pooled standard error. Twenty-seven is also the effective sample size
in determining the K factor, which for N = 27, P - 0.999 and Confidence =
0.95 is 4.090. The IM factor is therefore 4.090 x 1.197 = 4.90 seconds.
This factor is used in establishing the Y - IS reliability boundary value
for any point in the X 1, X 2 test space. Actual equations may now be
established for finding values at any settings in the three dimensional
Y, 1I, X2 space. Two of the most convenient equations are:

1. The equation for mean failure points of Y with respect to
Xl and X2:

Y - 14.33 - 3.70X, - 1.70X - 1.65 12 - o.x 2 
- o.x

10 (Y requirement) or 3.70X1 + 1.70X2 + 1.65X12 + o.60122 +

o.9Xn1-2 4.33

2. The equation for reliability boundary points of Y with respect
to X1 a X2 :

- 11.33 - 3.70X2 - 1.65X_12 - 0.601X2 0.92X12 - 10 + 4.90

14.9 or 3.70X1 + 1.02 + 1.65Xz2 + 0. 602 + 0.92X =

-0 .57.

Substituting appropriate values of X1 or X2 (coded values, not actual ones)
and solving the resating quadratic equations (Appeadx 11 and L7)
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values from which the mean failure contour (1) and the reliability bou ndary
contour (2) are plotted in Figure 9. (The sigifcaee of curves (A) and (B)
will be explained later).

Analyis -- fEx ent 1

The experiment is substantially completed with the plotting of the mean
failure contour and the more significant reliability boundary. Much more
could of course be done if necessary or desired. For exmple, if the
reliability boundary had passed below the (-1, -1) requirement point
(indicating a probability of more than one unit per thousand failing to give
10 seconds of service at (mi, 4i), expressed with a 95% confidence level)
then instead of launching a redesign of the battery, the missile user may
decide that he wiil be satisfied if he can reliably get nine seconds of
operation. An equation (3.OX1 + i.70X2 + 1.65X!2 + 0.60X2

2 + 0.92 1X2i
-1.57) will then penit detemination of the nine second reliability
boundary (intersection of the surface, which is Y - KS below the mean
response surface, and the nine Second plane). For a case of adequate
reliability such as the present example, approidations of the X and X2
reliability boundaries can be made for higher requirement levels of Y, U
or perhaps even 12 seconds. Single variable curves may be generated and
studied, e. g. capacity as a function of temperature at a constant vibrational
force anywhere from 10 to 40 g.

For the present purpose, however, it is now possible to make the required
prediction of the battery design reliability at the temperature requirement
of 165-F and at the vibration requirement of 10 g. The reliability standard,
it is estimated, will be met anywhere to the left of the reliability boundary.
Therefore the design has the desired reliability at the 165 0F, 10 g point.
If desired, it is possible to determine how many standard error units there
are along the Y axis through (-1, -1) between the mean response surface and
the 10 second plane and from this give an estimate of the actual reliability,
99.999 etc. However, this is of no practical significance, the main question
being, has the reliability standard been met or not.

From the reliability boundary plot, estimates can be made of the battery
design capability at environmental stress levels above the requirements.
These estimates are qualified, of course, by the reliability standards. Thus,
expressed with 95% confidence, it may be estimated that no more than one
battery ot of a thousand will fail to give at least 10 seconds of service
under the following environmental conditions:

a. At a temperature of up to 188*F while undergoing a 10 g

vibration

b. In excess of a 40 g vibrational force at a temperature of 165eF

c. At a teperature of up to 181.F bile undergoing a 20 g
vibration, etc.
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Derivation of Experimental. Test Data,---

In the detailed example just completed, tests were conducted throughout
the X1 , X2 space, the data was analyzed and various estimates were made
concerning the capabilities of the population from which the sample was drawn.
These estimates in final form are represented by the reliability boundary
contour. A logical question at this point would be, how close is this
contour to the true picture? For example, how close is it to the average
contour for an infinite nmber of samples of the same size drwn from the
same population (in this case, future batteries produced exactly the same
in every respet as the lot from which the teat sample vas dr-awn)?

There are two ways to answer such a question. One would be to produce
enough batteries and run enough tests with samples of size N & 30 (14 at
(-1, -1) and 2 at each of the other 8 points) to begin to understand the
variability of the individual sample reliability boundaries. in this way,
it could eventually be said whether or not the sample gave a "good" estimate
of the true picture. This approach is not practical, of course, with
expensive items and testing. The second way to answer the question is to
know in advance the nature of the true picture, by conducting experiments
with data which is derived from populations of known statistical parameters
such as mean, standard deviation and, in this case, coefficients for the
two variable second order regression, and the standard error. This will make
it possible to conduct many relatively inexpensive experiments which can be
made to closely simulate tests with actual one-shot items. The use of this
technique has made it possible to thoroughly explore the FSD method in the
vital area of the effect of sample size. Completely unexpected phenomena
were observed in this manner, making it possible to derive methods for
handling them.

In establishing the simulated test data, a hypothetical battery design
was visualized with a mean capacity of 16.04 seconds and a standard deviation
of 1.0 second at the (-l, -1) requirement point. The capacity Y of the
battery was established as a function of XI (Temperature) and X2 (Vibration
g Force) in accordance with the following equation:

- 14.61 - 3.24X1 - l.
69x2 - 2.13X1

2 _ 0.94 o .43X

A variance, standard error squared, of 1.0 was selected for the X, X2 test
region. For N = 30 with 24 degrees of freedom for estab :lishing te pooled
standard error, the K factor is 4.17. Therefore, MB is 4.17, and a
reliability boundary equation may be set up:

3.24X1 + 1.69x2 + 2.VX2 + 0.94X2 + 0.43X1.X = .14.61 - 10.00 - 4.17 0.4

The contour generated from this equation is shown on Figure 9 as (B), the
average reliability boundary for an infinite number of samples of size N = 30,
d.f. = 24. It is by no means the reliability boundary for an infinite sample
size. This limiting contour is generated from an equation similar to the
above except that 13 w 3.09, where the K factor of 3.09 is the l tin
value of K for an infinite sample size with an infinite nmber of degrees of
freedom. This infinite sample size contour, or universe reliability boundary,
is discussed and presented later in Figure 17. Curve (A) of Figure 9 is the
mean failure contour for any nuber of samples of any sime. This contour is
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generated by setting Y =10 in the basic equation, giving:

5624v1 + 1.69X2 + 2.13X12 + 0.94122 + 32 4 14.61 s- 10 4 i.61

It is seen on Figure 9 that the sample mean failure contour and reliability
boundary obtained in Experiment 1 are relatively good approxcimations of the
true values representing the known population. Just bow good they Are is a
question that could best be answered following the experimental exploration
of the effect of sample size in determining the response surfaces.

Cunt' (A) requires some coimnts. it passes through the Xl- aide just
about at the limit of the test area. it passes through the X2 ais at some
point well beyond the test area. The coefficients of the equation which
generates (A) were chosen deliberately so that the curve would have this
general shape. This represents practical considerations in establishing
the test area, as previously explained, with limits either at the estimated
man failure -point or at the TC (test equipment capability).

The method of obtaining actua.l simuixted test data is as folows:

The base equation, Y a 14.61 - 3.24XI1 - 1.9 2 .1311 2 - 0.94X2 2-

0.4XY-,will yield the following predicted values of Y when coded )[l and
X2 values of -1, 0, or 1 are substituted:

I C15.72 14.61 9.24
12

G 16.04 15.36 lo .42

,a table of randm normal numbers5 with a universe mean of 0.00 and a
universe standard deviation of 1.00 was entered at random In order to derive
the test data. In Examrple 1, for ezuvle, column No. 38 was entered. The
first 17 numbers are:

-0.30 -0.57 1.62 -0.43
-.1-1.53 0.39 -1.71

-1.63 2.75 0.34 1.148
0.-57 -1.64 0.70 000

1.69
These numbers add~ed to 16.04 give the following epne t(1 -1):

.15.74 15.47 17.66 15.61
15.63 14.51 16.43 114.33
14.41 3.8.79 16.38 17.52
i6.61 14.140 16.74 16.04

1.773
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These numbers have a mean value of 16.12 and a standard deviation of 1.313
which are estimates Of the true population values of 16.04 and 1.000.
With an actual large lot of batteries with a mean of 16.04 and and a
standard deviation of 1.000, it is possible that a Sample of N = 17 could
have been drawn with a Y of 16.12 and an S of 1.313. In other words, the
artificial populations can be as useful as actual populations in studying
the effects of performance variability, actually much more so since all
types of simulated test data in almost 'I-1lMited quantities can be rapidlY
and economically generated.

It was decided to explore the effects of sample size in using the RSD
method by constructing samples with three representative sample sizes:
N &15, N &30 and N - 60, with (-i, -i) point test quantities of 7, 14
and 28 respectively and with 1, 2 or 4 tests at each of the other eight
points of the 32 test design. Ten eamples were constructed for each of
the three sample sizes for a total of 30 examples. The examples were
constructed in such a way that the results of the analysis could be
followed in stages for each of the 10 examples, i.e, from N * 15 to N - 30
and N = 60 with each increase based on additions to the previous data.

A table of random numbers5was entered to give 10 consecutive numbers
of 61, 46, i0, 24, 85, 40, 38, 28, 58 and 17. These numbers were used to
determine the column numbers to be used from the previously referenced
table of random normal nuzmbers. Thus the three No. 1 samples, 1A (N = 15),
13 (N = 30), and 1C (N = 60) were constructed with the 50 numbers of column
61 and the first 10 of column 62. The No. 2 samples were derived from
columns 46 and 47, etc.

The breakdown of the 60 random normal numbers, e.g., from columns 61
and 62, was as follows, with the random numbers added to the predicted value
for each of the nine test design points:

Test Design Point Sample Numbers

x , A to OA IB toO1§ lC to 1oC

( -, -1) 1-7 1-14 1-28
0 0, -1) 29 29,30 29-32

- 33,34 33-16
-i- 037 37,-3 37-

( o, 0) 41 4.1,42 41-"
(1 0) 4 ,46 448

..... .. 1 z -- - ..... . 49 497;50--o 49..... 9 52
0 0, 1) 53 53,54 53,56

( 1, 1) 57 57,58 57-60

As an example of the above, the detailed Example 1 was based on the 7A
and 7B samples. The No. 7 samples were derived from columns 38 and 39 of
the table of random normal numbers. Taking the (0, 0) point as an example,
the predicted value from the basic equation is 14.61. Numbers 41 and 42 in
column 38 are -1.75 and +1.23. Adding these to 14.61 gives the simulated
test data values of 12.86 and 15.84, the (0, 0) values used in the example.
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Sample Size Determining Exeriments

Some of the factors which influence sample size were developed in the
explanation of Example 1. It was seen that testing of only seven units at
the temperature and v1bration requirement point (-1, -4) gave an erroneous
indication of the reliability of the design and that it was necessary to test
an additional 10 units before the desired reliability was indicated.
Similarly, testing only one unit at each of the other eight points of the
test design gave an erroneous indication of the shape of the response
surface, implying that the quadratic components were not significant.

it is desirable to keep the required sample size as small as possible,
particularly when dealing with expensive units and tests. In order to gain
insight into the minimum sample size which will give effective results,
extensive empirical data is required, the purpose of this section. Thirty
samples were established in accordance with the procedures given in the
last section. The three sample sizes, 15, 30 and 60, were arbitrarily
chosen as practical round numbers. The established test data for the
samples is given in Appendix IIA. The remainder of Appendix IT gives
calculations, similar to those in Appendix i for Example 1, for the complete
analysis of the test data for the 30 samples, ending with the reliability
boundary equations in Appendices IID6, IIE6 and Ii'5 from which the contours
were plotted as shown in Figures 14, 15 and 16. -

The inadequacy of a subsample of 7 units at (-1, -1) is clearly shown
in Ap xendix II where 5 of the 10 "A" samples show inadequate reliability,
i.e. Y - KS values below the 10 second requirement. This occurred with
only one of the "B" samples (7B) with 14 tests at (-l, -1). As shown in the
previous Example 1, based on the 7A and 7B samples, three more tests were
required to establish the reliability. All of the "C" samples with 28 tests
at (-1, -1) were adequate in this respect.

The inadequacy of the subsample of 7 at (-1, -1) is further illustrated
by the tests of the assumption of normal distributions as shown on Figures
10, i!, 12 and 13 based on calculations given in Appendix 37C. Figure 10
shows in general a wide variation of the cumulative distribution points
around the best, or least squares, straight lines, indicating little
confidence in making the assumption of normality even when it is known, as
in this case, that the points were derived from a known normal distribution.
Figure 1, showing the plots for the "B" subsamples of 14, indicates that
this number is about sufficient for making the required assumption of
normality. Most of the solid points are close to the required straight
lines. The up, down and up plot of sample 53 is characteristic of a double
population distribution on either side of the mean value. This act,ally
occurs in the columN of random normal numbers from which the sample was
derived. In practice, however, there is no known way in which a battery
performance parameter can be distributed in this manner other than through
chance sample variability. Therefore the plot of 5B could be considered to
represent a straight line, thus satisfying the assumption of normality.
The tendency most to be looked for in analyzing these plots is a pronounced
curvature in one direction or the other, suggesting the probability of a
skewed distribution. A slight tendency of this sort is noted in the plot
of 10B, but not enough to comter the assuqftn of nomlity. The plots
for the "C" samples in Figures .2 and 13 1 tend to stsfy the almrptio
of normality of distribution.
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All of the cumlative distribution plots have dotted lines on them, all
parallel to each other. These represent the straight line plots for an
infinite sample size with a standard deviation of one and are Shown to
indicate how well the individual samples correspond to the true mean and
standard deviation. It is seen that the larger the sample the closer the
correspondence in general. The three vertical lines in each figure represent
the mean, at P f 50, and the Minns and plus one standard deviation values at
P * 16 and P = 84.

Based on the foregoing, it may be stated that when dealing with samples
drawn from a normally distributed population with relatively low variance,
a sample of approximately 14 at (-1, -1) Vill in general Satisfy the
assumption of norfnality with a cumulative distribution plot which approximates
a straight line. Slight departures from normaity cannot reasonably be
detected, but the probability is that relatively large degrees of skewness
can be. Much more confidence in asSUMing a nor-=! distribution can of course
be had with a larger sample size if this is economically feasible.

In conducting an actual experiment, once it has been determined that it
is not unreasonable to asste normality of distribution, at least in the
region about (-i, -1), the remainder of the teat region will be explored to
estimate the nature of the response Surface. The minimum subsample size for
this is eight, one at each of the remaining test design points. Even for a
sample drawn from a population with relatively low variance, Example 1 showed
that this minimi subasmple Size is inadequate. This is more positively
demonstrated by Figure i4, the "A- sample reliability boundaries drawn from
the calculations given in Appendix lID. Nine of the 10 boundaries fall
above (-1, -1) but the wide variation of them around curve B indicates a high
probability of one of these mall samples indicating that the battery design
is not reliable when it actually is. Sample 7A is in this category. The
mean failure contour for the sample, as shown by the dots, gives a good
estimate of the true mean failure contour A. In fact each of the 10 samples
do, as shown by the cluster of points around curve A at X2 = 0. The wide
variation in the reliability boundaries is due to the variation which the
samples give in the estimate of the standard error. There is also a wide
variation in the estimates of the coefficients of the response surface
equations (Appendix IIDI). This accounts for the considerable variation
in the shapes of the contours. Another indication of the inadequacy of the
sample size is given in the Analysis of Variance in Appendix I=I2. Only
four of the samples show the quadratic terms to be significant. For the
others linear response surfaces, or planes, are erroneously indicated with
straight line contours.

Replication, repeating the experiment, is found to eliminate all of these
problems as shown with the reliability boundaries for the "B" samples as
given in Figure 15, based on the calculations in Appendix lIE. It is seen
that each of the 10 samples now gives a fairly g estimate of the true
contour, represented by curve B. The Analysis of Variance given in Appendix
1 shows that each smple correctly indicates that the quadratic components
of the mathematical model are significant. Having two reSUltS at each test

design point also affords a measure of the fit of the matatical model to
the data. In every case the lack of fit term is found to be insignificant.
The assumtption of uniformity of variance troughout the entire test region
is satisfactorily met for each samle as shown in Appendix 1M. hgalu,
uniform variance is inferred by te inbility to ver eat (-1-1)
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to be significantly different from the variance throvghout the rest of the
test region. This makes it possible to cempute a ualfova pooled standard
error based on all of the test data and fran this to calculate the equations
for the reliability boundaries.

The reliability boundaries for the "C" samples, with four tests at each
of the eight test points, as given in Figure 16, naturally show a still
closer estimate of the true curve B. Whether they give that much better an
estimate than the "B" samples do to Justify the added costs is a debatable
point. In the opinion of the author, they do not. However, for a battery
design with much greater variability than the hypothetical desi n, or for
samples which give reliability boundaries on or slightly below (-i, -1), it
would undoubtedly be necessary to replicate beyond two tests at each point.

An analysis of variance is not included in Appendix IIF for the "C"
samples since the analysis for the "B" samples had shon these to be
satisfactory in regard to significance of the quadratic terms and proper
fit of the mathematical model.

The effects of replication are shown quite clearly on Figure 17. The
"A" sample reliability boundary 7.1 gives a poor estimate of the true curve
IA (curve B of Figure 14). The "B" sample boundary gives a much better
estimate of the true curve 2A and this is even more pronounced with the "C"
sample curves 7.4 and 4A. Additional curves are shown for a tremendous sample
consisting of 40 tests at each of the eight design points. Contour 40
corresponds very closely, as one would expect, with 40A representing the
average reliability boundary of an infinite number of samples with 40 at
each point. Curve 40 M.F.C., the mean failure contour, is found to
correspond perfectly with the total population or universe mean failure
contour. The curves 1A, 2A, 4A, and 40A are seen to approach a limiting
contour which is called the U.R.B., or universe reliability boundary. This
curve is derived from an equation based on a K factor of 3.09 for a sample
size of infinity. It may be interpreted by saying that in testing an
infinite sample size, one out of a thousand units would fall below the UoR.B.
Fifty per cent would, of course, fall below the universe mean failure contour.
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C-O1CLSIONS

The theory of the RSD method has been covered, the Mathematics involved
have been explained in detail, and an analysis of the effects of Sample size
has been performed in order to provide a guide in determining sample Sizes
for an actual reliability program for batteries or other one-shot items. It
has been demonstrated that the method will provide a great deal of valuable
reliability prediction data from the testing of a relatively small sple.

As posed at the end of the first Section of the discussion, a basic
question is, what assurance is there that the final reliability predictions
are correct and usable? This is particularly relevant since the sample test
data was not only used for maling the predictions, bt for testing the
assumptions of normality of distribution and umifOjuity of variance upon
which basis the predictions were made. The Saple size determinig section
showed that the sample size has great bearing on the assurance with which
the final conclusions may be accepted. The smallest Sample size of 15 showed
a relatively high probability of erroneously concluding that the battery
design was unreliable. The wide scatter of the Sample reliability boundaries
also showed that little faith could be placed in reliability estimates out
along the X axes. The predictions for I & 60 Showed such excellent conform-
ance with the true picture that the reliability preaictions may be made with
great assurance in their accuracy. However, at least for most missile
battery programs, a sample size of 60 would be considered excessive from an
economic standpoint. Forty-five would probably be as well. Thirty would be
considered a reasonable size in many cases.

The results for the "B" samples of size 30 showed in general a good
approximation of the characteristics of the battery population. The test of
the suitablility of assuming normal distribution appeared satisfactory, as
well as the test for significance of quadratic components, the test of the
assumption of uniform variance and the actual reliability boundaries
themselves. These factors indicate that the sample size of 30 should be
adequate in most cases and that the final reliability predictions can be made
with considerable assurance. In conducting an actual program, as previously
pointed out, there may be instances where more than 14 tests will be required
at the X1, X2 requirement point and where it may be necessary to rep cate
beyond tio tests per point throughout the rest of the test design. In
establishing the total lot size for the program, a reserve should be provided
for these contingencies.
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B. Cumulative distribution points of responses at 1 650F, I?- log

Select suitable intervals for Y such that there are from 10 to 20

intervals. Then set up a table for the midpoints of the selected T

intervals, tally the Y responses and set up three additional colmns for

frequency, cumulative frequency, and cumulative frequency expressed as

percentages of 2 x N = 34. The cumulative frequency column is derived from

the frequency column by a counterclockwise rotating addition system; e.g.,

-o - -
0+0 1-T 0+2

1.1 0-22 2-14, etc.

The cumulative frequency values thus obtained are divided by the double total

to yield the cumulative frequency Percentages (eesed to tenths of a per

cent balm 10% and above 90%).

38



Cwiziative
Cumlat ive, Ymque

T Tally Frequency Fr equncy (% o N-3

19.0 0 0 -

18.6 1. 1 1 2.9

18.2 0 2 5.9
17.8 11 2 14 12-

17.64 1 1 7 22.

1700 8 214

16.6 111 3 11. 32

16.2 11 2 16 17
15.8 111 3 21 62

15.14 1 1 25 714

15.0 0 26 76
114.6 11 2 28 82

114.2 11 2 32 914.1

13.8 _______0 314 _____

C. Deter~mination of coefficients of a fitted model of the foru

I-b bL ~ I~b 2 2
0 1 22 1 1 + 2 h + b1 2 11 2

2 -

T X1  XY &2l X1X21

"I "1 16.12 -16.1 -16.12 16.12 16.12 16.12
0 -1 16.07 0 -16.07 0 16.07 0

1 -1 11.27 11.27 -11.27 11.27 11.27 -1.1.27

MI 0 16.99 "316.99 0 16.99 0 0

0 0) 12.86 0 0 0 0 0

1 0 9.19 9.19 0 9.19 0 0
-3. 1 15.78 -5.78 15.78 15.78 15.78 -15.78
o 1 11.22 0 11.22 0 11.22 0

1 1 6.143 6.143 6.143 6.16.43 6. h I3
- 3 -. 4-

SMN 1W993 -22.00 -10.03 7.87.9 -4
- -7 -60



I IIT -22.00

6- -.. . . - -3.67

ZX2y -1. -167
6 6

lh! Y -4650o
b .. ..... - FE -1.13

12 14 14
+Z -2/55 .78-77.29 m-L.5

__ 4.76_2 2 2
2-2 1Y2/3 1 76,89"77.29 -0.4)

2 _ ___________ u me -0.620b22 22 2

- " 2/3bu2/3b2 2  12.881 + 0.507 .0.133 - 13.52

Thvfore the fitted equation is:

1 - 13.52-3.671 -1.-67X 2j0761 2 02 2 
2 -1-13Y1 2

A check is made for arithmetical errors. The sm of the coefficients is 6.09.

This is checked against the addition of the Y response values, ordered from

Y, to r. 9 in accordane with the foflowing formula:

5r -14(l +T- +Y )-Y .8(1 +1 )-Y +29Y
Coeficen1ts - 2- 4 . 3 6.87 9

36

.z16.22-J4(6.7.6.9912.86)-i11.27.8(9.19eU.22)m15.78429z6.3

36

8o.6o-L83.68-U.27163.28-15gB..86.)a4 219.62 .2.
36 36

Allwiing for a difference due to rounding off errors this check indicates

that no aritbaUinial errors have been USAe in estAblishng the coO efet.



D. 4bayie Of vuariance

Degrees of

Source of Variance -Sum of =8s .... (d.f.) ean. Sa

zty 2  
- 1,99.8497 9

due to b, (4 1,93.3072 I
0 9

due to b8, 6 80.6667 1

C~ 2
de tob1
ideto b2, 6

quadratic
'C oonents ( .2I,2/3Zi)2

due tob, 2 .il1

due to b22, 0.0800 6.2826 1 2.09112

eto , -r) 2 t.o5062 *det 12' 4

Residma. 2.8264 3 0.94s21

* 2.0942

? 3  $ - - 2.22
,3 .94-i

In order for the quadratic components to be significant at a 95% significance
level, the F ratio must be at least 9.28. The ratio of 2.22 shows the
quadoat cpouet, to be not significant. Another vW of stating
this is that the quadratic components have not been proved to be s i

3. Detmwnation of coefficents of a fitted model of the foamt

"n+" i +b +,.. bU + b2 + bxx
T~b0 Ab41 *Z+bZb 2 9I2

2 h1 Z



I 2 "l l~y 2y22y2T

-1 -1 16.12 -16.12 -16.12 16.12 16.12 16.12

16.12 -16.2 -16.12 16.12 16.12 16.12

0 si 16.07 0 -16.07 0 16.07 0

16.55 0 -16,55 0 16.55 0

I -1 11.27 11.27 -11.27 11.27 11.27 -11.27

9.87 9.87 -9.87 9.87 9,87 -9.87

-. 0 16.99 -16.99 0 16.99 0 0

15.79 -15.79 0 15.79 0 0

0 0 12.86 0 0 0 0 0

15.84 o 0 0 0 0

1 0 9.19 9.19 0 9.19 0 0

8.72 8.72 0 8.72 0 0

-1 1 15.78 -15.78 15.78 15.78 15.78 -15.78

3.o9 -5.o9 5.o9 15.o9 13.09 -13.o9

0 1 11.22 0 11.22 0 11.22 0

.05 0 1U.05 0 11.05 0

1 1 6.3 6.43 6.43 6.43 -6.33

6.12 6.2 6.12 6.12 6.12 6.12
- - . 1- -



zZl 44.29
bu - m= " 3.69

12 12

bg a ly20i.31sm - 1.69
12

0 18 -l -2-2

2 8 8

mm a.- w - o.64
1 4 14 14

=2-2/32I 151.69-154.05 2.36

?2 4 4 ( - 0 8)

a- 12.838 + 1.093 + 0.393 - 14.32
01 -18 U 2/bl2322

Therefore the fitted equation is:

/|- 32 - 3.69z. - 1.69x2 -. 64 . .2 - 0.5912 2 - 0 9 
iX2

Check: Woefficients - 5.81

cieficlent. mr .k14r+) 3 +8(16*Ie) -

72 (for N - 18)

5(32.24) -14(94.10) --21.14 +8(140.18) -30.87 .29(U2.55)

72

161.20 *-376.40 -2a1.4 +32-.44 "30.87 .363.95

72

p-P-w a 5.82
72
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F. --Analyi Af VOianO

Dgrees Of
Freedm

S Oreof Variance Sims--Of Surs(~. ~ a ~

Zr2  3 319)455M 18

_f)2

due to bo, * 0966.55371

du to b, 163.460 1
1 12

due. to b, 3L31472' 121~

naminators doubled, in comparison to Appendiz ID, simce test results we

quadratic dold.
comporneats

due tobto. 10.75~81 1

due tb 2 ,(zy23y) 1.3924 18. 1 3 6.2223

que to b12  86.5161 1

-2 8

Lack of Fit 41.8279 4 1,2070

kXPeriumt &rro 6.6"64 8 0.8333

F3,12 .5 2
krimuA - Error Sun of Squares 2

(04)2 +( 02 +1 2 2+.9)2 2 2. 2 2

14



The critical F, - ratio at a 95% level of sigificance is 3,49. This is
exceeded by 'the 6.50 ratio. Therefore, the quadratic conponents are
significant. The lack of fit ratio, 1.45s, is loe than F4 8 *n 3,84k, there-
fore the lack of fit trm is not significantly different 'frau experi-
mental error and, 'therefore, is non-significant.

G.Deterv1ination of standard error, all tspoints expept- (-A. 1

y 7Differences

Test Point Predicted Value Test Results (Y-7)
"l 1 (Frmi equation) (Signs not necessary)

o &1 15.4t3 16.07 o6
16.55 1.12

1 M1 11.00 11.27 0.27
9.87 1.13

-l 0 16.38 16.99 0.6
15.79 0.59

0 0 14i.33 12.86 1.47
15.841.51

1 0 8.98 9.19 0.21
8.72 0.26

-l 1 15.00 15.78 0.78
15.09 0.09

o 1 12.03 11.22 0.81
11.05 0.98

1 1 5.76 6.43 0.67
_______ _________6.12 0.36

2

~(r-) -11.0982

Variance - l~~.

- 1.00893

S- 1.0Q-4

Note; 5 d.f. are expended for estimating
the coefficients; therefore, the
denwzinator is N-5 - 16-5 - 11
The sixth coefficient is based on
a 44. frca the tests at (-Is -1).
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H.,- Standard-, error fromi pcoug-r~featimates of__Variance

2 11~~f(d.f.) x 1.00893 + 16(d.f.) x z i95Sp (pooled variance) 9 7 d.t.

11.09823 + 2765-9296 -348.6_99-J33.
27 27

Sp (pooled stabduid error) ;S a 1-19

46 ~ 1.9



I
I. -Determdnttion of Mean Failure Contour Points

1. Mean failure contour equation:

3. "7.o + 1.7012 + 1.61-2 + 0.6 22 0.921 2  4J3

2. Value of X- at 2 -0; 3.701. + 1.65_ 2 a .33

estimate xI at o.80 ; 2.96 + 1.06 - 4602

estimate 31 at 0.85 ; 3.15 + 1.19 a 4.34

estimate at 0.84 ; 3.11 + 1.16 w 4.27 , .. root is 0.85 -

3. Value of X2 at 0 ; 1.7012 0.6012 .33

estimate X2 at 2.5 (beyond test region, mw.u X2 - 1.0)

4i. value of Xatl X2 ; 3.171 1 .1.70 +1.65112 +o.60.+o.91j

- 4.33

4.62X, + 1.651ic 4 .33 - 1.70 - 0.60

- 2.03

estimate XI at 0.40 ; 1.85 + 0.26 = 2.111

estimate X. at 0.38 ; 1.76 + 0.24 - 2.00

estimate X1 at 0.39; 1.80 + 0.25 2.05,:. root is 0.39 X1

5. Value of X at X2 IA 278X + +1.65 2  4.33 +170 o.60
-

estimate XI at 1.50 ; 4.17 + 3.71 w 7.881

estimate X1 at 1.20 ; 3.34 + 2.38 - 5.72

estimate 11 at 1.0; 3.06 + 2.00 - 5.06

estimate X at 1.15 ; 3.20 + 2.18 - 5.38

estimate XL at 1.16 ; 3.22 + 2.22 - 5.h4, . root is 1.16 -

Eot: Mtraction of the roots by the above tial-and-ero imthod is ver
fat with a desk calculator, ach faer tb 10134 the standard

2A 1wa



J. Determination of reliability boundr apy ooow it

16. Reliability boundarY equatin

3.70X1- + 1.70Z2 +.65X, - + 0"60% + 0, 0.57

2
2. Value of 31, atIX2 -0 34701k + i65x1  - 0.57

estimate X, at -0.20 ; 0.714 + 0.07 a 0.67

estimate 11 at -0.18 ;-0.67 + 0.05 & 0.62

estimate Ilat -0.16 ; i059 + 0604.& 0.55

estimate lis t -0.17 -0.63 +0.05- 0.58 D '*root is

2
3. Value ofx 2 at X,-0; 1.72 +0o.6=2z 057

estimate X2 at -0.40 c, 0.68 + 0.10 -0,.58

estimateX2 at m0,39; m.66 +0-09 - 0-57 , .root is

- 0. 39 w X2

4&. Value of 11 at X2 - -1 ; 2.78 + 1.65X.1 - 0.57 + .70

- 0.60- 0.53
estimate , at 0.20 ;0.56 + 0.07 - 0.63

estimate 3 at 0.18 ;0.50 + 0.05 - 0,55

estimate X, at 0.17 ;0.147 + 0.05 - 0.52 , .root is 0.17 - ,

5. value of xatIx2  o.5; 4.16+1.65 2 m- 0.57 -o.85

estimate xat -0.5; -2.o8 +o.41l- -1.67

estimate x at - 0.140 ; -.66 + 0.26 -- 1.50

estimate x at - o.145 ; 1.87 + 0.33 -1.4

estimate x-at"0. 47; !.0+o.6 .6 roti

6.Value of xiatkx2 - ; 4.62i+ 1.651_2 - -0.57- 1*70
-0.6o-2.87

estimute1-at 1.0 ; 14.0 + 1.65--2.97

estimate at -0.96 ; 4.144 + 1.52 - 2.92

estiate 1 at 0.94; -434 !.6 -- 88

4&8 0.*93 " X



APPENDI II

A. _Smple Test Data

1. "A" Samples

S AMPLE

Test
Design
Pointt 1A 2A _ 4A A _6A 7A 8A 9A IOA

(-1,-1) 16.09 15.21 15.08 16.36 14.48 15.86 15.74 15.98 15.55 15.77
15.72 16.40 16.57 11.95 16.45 15.87 15.63 15.50 16.2 16.06
16.98 16.54 1.17 16.94 17.28 15.32 !4.41 16.27 16.22 15.04
16.54 14.55 15.77 17.07 16.87 17.45 16.61 15.96 16.85 17.20
18.35 14.99 16.00 14.74 16.99 14.95 15.17 16.23 16.56 15.54
17.86 14.78 16.41 15.38 16.76 15.85 14.51 14.83 14.38 15.86
15.62 17.06 15.34 17.39 14.76 16.19 18.79 16.38 14.37 111.7

-.. -.. . - -=. . . ... - . .- . - ---

(o,-i) 16.94 16.44 16.36 15.18 14.16 16.53 16.o7 14.4o 16.03 14.1

(1,-1) 9.93 11.30 10.-9 11.05 11.62 9.21 11.27 11.72 9.65 9.14

(-i,0) 15.77 15.80 16.83 14.93 16.38 16.32 16.99 15.88 14.20 14.62

(0,0) 13.4o 15.05 14.31 15.6o 14-.50 15.00 12.86 13.61 13.51 14.84

(i, o) 7.71 lO.61 8.o4 9.36 8.13 9.71 9.19 7.00 8.03 8.93

(-1, 1) 13.77 13.88 12.37 13.77 13.4o 13.47 15.78 13.39 12.75 15.86

(o, 1) 11.92 lO.85 12.6o 13.39 11.18 12.36 u.22 12.11 12.43 11.0

(1, 1) 6.61 4.741 5.61 7.65 6.66 5.58 6.43 5.97 4.141 5.3
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2. "B" Suupleu

S-A M P LE

Test
Defsint - - - --

(-1,,i) 16.09 15.2- 15.o8 16.36 14.148 15.86 15.74 15.98 15.55 15.77
15.72 i6.4o 16.57 14.95 16.45 15.87 15.63 15.50 16.24 16.
16.98 16.54 114.17 16.94 17.28 15. 32 14.41 16,27 16.2 15.4
16.54 14.55 15.77 17.07 16.87 17.45 16.61 15.96 16.85 17.2

18.35 14.99 16,o0 14674 16.99 14.95 15.47 16.23 16.56 15.5
17.86 14.78 16. 4 15,38 16.76 15.85 14.51 14.83 14.38 15.8
15.62 17.06 15.34 17.39 14.76 16.i9 18.79 16.38 14.37 14.79
16.05 17.36 15.61 15.61 15.11 17.32 14.40 16.86 15.59 14.94
17,23 15.68 15.57 16.o5 1-4.66 18.50 17.66 17.17 17-2 16.35
17.34 15.18 16.16 13.53 17.18 16.56 16.4-3 15.28 16.55 16.25
16.05 15.84 15.8o 15.89 15.74 15.59 16.38 16.68 16.97 15.51
15.45 14.88 15.17 15.91 14.84 16.84 16.74 i4.60 16.88 15.21
15.92 15.73 15.02 15.43 17.16 14.40 15.61 i6.o4 16.95 16.95
16.92 13.90 16.46 16.42 15.77 15.16 14.33 17.46 15.84 15.32

(o,-i) 16.94 16.44 16.36 15.18 14.16 16.53 16.07 14.4o 16.03 14.11
14.74 14.36 14.34 16.26 13.95 13.82 16.55 16.28 14.56 15.70

(1,-i) 9.93 11.30 io.49 11.05 11.62 9.21 11.27 11.72 9.65 9.43
10.2o lO.82 lO.94 11.o9 9.72 8.99 9.87 10.28 12.29 9.82

(-1,0) 15.77 15.80 16.83 14.93 16.38 16.32 16.99 15.88 14.20 14.62
14.83 16.84 16.79 16.03 15.29 15.27 15.79 15.78 14.48 15.03

(o,o) 13.4o 15.05 14.31 15.6o 14.50 15.00 12.86 13.61 13.51 14.89
14.12 16.54 15.67 13.59 13.81 14.39 15.84 12.69 15.89 14.28

(i,0) 7.71 10.61 8.04 9.36 8.13 9.71 9.19 7.00 8.03 8.93
9.14 7.83 10.34 9.72 7.57 12.09 8.72 8.69 11.62 10.87

(-1,1) 13.77 13.88 12.37 13.77 13.40 13.47 15.78 13.39 12.75 15.86
13.54 13.39 14.82 13.14 13.90 13.55 15.09 14.87 15.60 13.93

(0,1) 11.92 1o.85 12.6o 13.39 11.18 12.36 u.22 12.1 12.43 u.
12.48 11.24 12.68 13.71 iO.66 13.45 11.05 9.62 11.86 13.22

U,.) 6.61 4.74 5.61 7.65 6.66 5.58 6.43 5.97 4.14 5,
6.74 5.6 6.28 -.36 6.14 6.12 5.92 5.2.7 4.9
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3. "C" Bpes

,S A M -P- L -E

Test
sign

Point 1C 2C -3C 5 6 7I 5C _C loc

(-i,-1) 16.o9 15.21 15.08 16.36 14.48 15.86 15.74 15.98 15.55 15.77
15.72 16.40 16.57 14.95 16.45 15.87 15.63 15.50 16.24 16.06
16.98 16.54 14.17 16.94 17.28 15.32 14.41 16.27 16.92 15.40
16.54 14.55 15.77 17.07 16.87 17.45 !6.61 15.96 16.85 17.20
18.35 14.99 16.00 14.74 16.99 14.95 15.47 16.23 16.56 15.54
17.86 14.78 16.4! 15.38 16.76 15.85 14.51 14.83 14.38 15.86
15.62 17.06 15.34 17.39 14.76 16.19 18.79 16.38 14.37 14.79
16.05 17.36 15.61 15.61 15.11 17.32 14.40 16.86 15.59 14.94
17.23 15.68 15.57 16.05 14.66 18.50 17.66 17.17 17.22 16.35
17.34 15.18 16.16 13.53 17.18 16.56 16.43 15.28 16.55 16.25
16.05 15.84 15.80 15.89 15.74 15.59 16.38 16.68 16.97 15.51
15.45 14.88 15.17 15.91 14.84 16.84 16.74 14.6o 16.88 15.21
15.92 15.73 15.02 15.43 17.16 14.40 15.61 16.o4 16.95 16.95
16.92 13.9o 16.46 16.42 15.77 15.16 14.33 17.46 15.84 15.32
16.48 14.26 16.1o 16.43 17.44 15.76 17.52 15.50 15.64 15.34
16.69 15.26 16.6o 16.57 15.05 1 4.85 16.o4 17.28 16.34 16.65
15.53 15.00 13.68 16.38 16.66 15.62 17.73 15.37 14.87 15.30
16.28 15.53 18.00 14.69 15.53 14.43 15.85 16.48 15.62 16.O9
16.48 15.98 15.76 17.16 16.55 15.o6 16.8o 16.87 16.56 17.81
16.31 16.21 16.97 16.75 15-45 16.53 15.77 17.34 16.43 17.09
16.3o 16.23 15.01 14.87 16.65 14.92 15.02 14.97 14.62 14.85
16.90 14.87 16.52 16.30 15.72 16.69 15.57 15.57 14.72 16.80
16.14 15.89 18.75 15.52 15.67 15.84 16.53 14.15 14.58 15.56
16.56 15.21 15.98 15.96 16.45 17.79 16.95 16.23 17.51 15.63
15.73 16.23 15.74 17.59 16.61 16.58 16.o4 16.50 16.03 14.70
15.54 16.91 15.45 16.63 16.27 14.49 17.07 16.73 14.95 15.13
16.o4 15.68 14.99 16.38 16.96 15.52 13.87 16.74 15.25 15.1
17.20 15.62 114.69 16.26 18.47 15.82 16.35 15.99 16.19 17.5

5_



3. ""Szpe Cn'.

S AMPLE

TestDesign --- _....____

Point 10 --- I cl 4c 5C -- 7 8c - 9-c - ocl

(0,-i) 16.94 i.14- 16.36 15.18 14.16, 16.53 16.07 14.40 16.03 14.11
14.74 1.36 14.34 16.,26 13.95 13.82 16.55 16.28 14.56 15.7c
16.941 15.78 15.91 16.114 !.68 !443 14.70 15.38 16.38 !6.16
15.99 15.35 15.78 15.16 1449o 16.70 15.50 15.27 14.03 15.35

(1,--) 9.93 11.30 10.49 11.05 U-.62 9.21 11.27 11.72 9.65 9.43
10.20 10.82 10.94 U.09 9.72 8.99 9.87 10.28 12 .9 9.82

9.63 12.18 10.9o 9.87 9.54. 10.87 9.10 10.45 10.82 -1.01
099 10.51 10.75 11.33 10.49 9.19 9.54 9.58 1O.65 9.72

(-1,0) 15.77 15.8o 16.83 14.93 16.38 16.32 16.99 15.88 14.20 14.62
14.83 16.84 16.79 16.03 15.29 15.27 15.79 15.78 14.48 15.03
16.34 15.34 16.49 16.88 15.92 17.07 16,o8 16.94 17.00 16.51
16.34 16.09 15.95 15.06 14.78 15.70 14.94 16.41 14.51 15.30

(0,0) 13.40 15.05 14.31 15,6o 14.50 15.00 12.86 13.61 13.51 14.89
!4.12 16.54 15.67 13.59 13.81 14.39 15.84 12.69 ±5.89 14.28
15.13 14.19 14.77 14.70 14.09 14.1o 15.3-1 15.25 13.70 14.86
15.45 15.o6 14.48 13.9o 15.14 14.22 16.46 14.45 15.88 13.64

(1,0) 7.71 lO.61 8.o4 9.36 8.13 9.71 9.19 7.00 8.03 8.93
9.14 7.83 10.34 9.72 7.57 12.09 8.72 8.69 11.62 lO.87
9.31 8.77 8.32 7.75 9.43 1.56 9.o4 9.42 8.07 10.49
9.36 9.60 lo.46 9.30 9.85 8.03 9.05 8.79 9.15 8.49

(-1,i) 13.77 13.88 12.37 13.77 13.40 13.47 15.78 13.39 12.75 15.86
13.54 13.39 14.82 13.14 13.90 13.55 15.09 14.87 15.6o 13.93
15.02 15.14 12.19 15.05 14.52 12.66 13.77 13.94 13.20 13.20
12.65 13.89 14.80 13.08 12.07 13.24 12.87 12.14 12.80 13.80

(0,1) 11.92 10.85 12.60 13.39 1.18 12.36 11.22 12. 1.43 1.o6
12.48 11.24 12.68 13.71 10.66 13.45 11.05 9.62 11.86 13.22
11.58 13.54 2.o08 1.71 12.99 10.17 11.33 10.90 12.45 11.94
12.08 12.07 10.60 11.39 12.16 14.27 11.90 10.94 13.59 12.91

(,I) 6.61 4.74 5.61 7.65 6.66 5.58 6.43 5.97 4.14 5.37
6.74 5-.36 6.28 4.91 5.36 6.41 6.12 5.92 5.27 4.94
6.07 6.2$ 7.57 6.88 5.03 7.56 7.76 6.84 6.04 6.90
8.1o 4.76 7,43, 7.25 612 7.16 4.78 6.26 6.65 6.49
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B. Analysis of ResDonses at Test Point (-1, -1)

1. "A" Sa s. N 15 1 at -1, -1))

S a leYVariance s y - M

1A 16.74 1.11022 1.054 10.35
2A 15.65 0.98978 0.995 9.62
3A 15.62 0.69433 0.833 10.57
A !6.12 1.17772 1.085 9.56
5A 16.23 1.27372 1.129 9.39
6A 15.93 0.62088 0.788 11.15
7A i5.88 2.21483 1.488 6.86
8A 15.88 0.29798 0.546 12.57
9A 15.74 1.02458 1.012 9.61iOA_ 1 i1.80 A 0.5-662 _....0.1 9 _ I_ --1. X

Averages 15 .96 0.99507 0.907 t0.10

2. "B" Saamples. N=3014a -. i) _____

Sammie ....... Y _ variance S y -

1B 16.58 o.78648 0.887 12.42
ZB 15.58 0.97779 0.989 10.94
3B 15.65 0.O44 0.665 12.53
4B 15.83 1.04261 1.021 1i.04
5B 16.oo 1.13809 1.067 11.00
6B 16.13 1.22775 1.108 10.93
7B 15.91 1.72342 1.313 9.75
8B 16.O9 0.68952 0.830 12.20
9B 16.16 0.83784 0.915 11.87

10B 15.80 0.500 708 12.8
Averages 15.97 0.93662 0.950 i.52

3 "C" Sam les, N = 60 (28 at (-1, -1))

Sample Y Variance S Y - ES

10 16.44 0.51193 0.715 13.53
2C 15.61 0.69610 0.834 12.22
30 15.83 i.o8686 1.043 11.58
4C 16.o4 0.8844 0.921 12.29
5C 16.20 0.97113 0.985 12.19
6C 15.92 1.07163 1.035 11.71
7C 16.07 1.35407 1.164 11.33
8C 16.09 0.72324 0.850 12.63
9c 15.91 o.84103 0.917 12.18
oC 8o.750. 0.866 1.
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C. Testing the _AsouftiQn of Normal Distribution at Point (- i, !)

The necessary calculations are given for samples 1A, lB and iC for 7, i4,
and 28 results respectively at (-1, -i). Calculations for the remaining
samples are similar. (See Appendix 1B for specific instructions).

Sample 1AN - Samlee -B, I i 1 4  Sample C,N= 28

CUM- c cum
Freq Freq Freq

CU- n (% Of Cum Nof Cr (of
Y.L Pre Pre Fftc r~ reng Frep -:1)

18.6 0 0 0 0- 0 0 -
18.2 1 1 7.1 1 1 3.6 1 1.8
17.8 1 3 1 1 3 U 1 3 5..
17.4 0 4 29 2 6 21 3 7 13
17.0 1 5 36 2 10 36 3 13 23
16.6 2 8 57 2 14 50 6 22 3916.2 1 11 79 3 19 68 8 36 64

15.8 1 13 92.9 2 24 86 3 47 84
15.4 0 14 - 1 27 96.4 3 53 94.6

150I- - - - - ----___ __,2 1 1 0 - - 5-___ -

The cmulative frequency percentages are then plotted against the midpoint

values of the Y intervals on arithmetical probability paper as shown on

Figures 10, U1, 12 and 13. The least squares straight lines are then drawn

through the solid points representing percentages between 10 and 90. In the

case of the 10 samples 1A to 10A on Figure 10, a best straight line can be

represented only for sample 8A. The wide divergence of the points for the

other samples require calculation of the equation for the least squares

straight line. For the "B" samples this had to be done for samples 5B, 6B,

7B, 9B and lOB. For the "C" samples it had to be done only for 5C and 10C,

the other samples permitting the estimation of the best straight line

directly. A technique for deriving the least squares straight line is

illustrated for sample 5C.
The solid pQnts for the sample a tr ferred, f Fgure 12, to

regular gm~ph paper.
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2. A I

-A I -1 -ix,
Arbitrary Jcal values are -asigued to the- tv 1~ e cale4 edY
convenience.~ ~~ Vaue of X nY r he pI- t aI edoftegah

Arbtae ofa values f e asindtXteoa-escle X and Y~ isored

o o 1.50 0
0.77 0.59 1.20 0.92
1.20 1.40.90 1.08
1.43 2.05 0.6 o.86
1.90 3.61 0.30 0.57

12.29 F -5.24 1 0 1-0
Sms 7.59 12.93 4. 3.4i3

The slope of the least squares straight line is determined from the equation:

zxy- (Ix) (1y) 3.43 -5445

ba n b 3.43-5.69 a -2.26,-o.68
n_

bo -Y -bX - MY -b IX = 0.75 +0.86 1.61

A n

The fitted eqiwtion is therefore Y - 1.61 - .68x

at X in 0, Y P 1.61

at Y = 0, X P 2 237

The least squares straight line is p!ote trghteetopnt. is
then measured off and transferred to the cauzlative frequenc Atibto
plot for ample 5C oa Figurte 12.



Aayis -of. "All' Sample- Data
-1. Coefficients of Fitted Equations

Sample tXY X ZX 2 y 2y I XX27 IY 2/31Y

S -22.03 -11.31 70.53 75.91 -0.35 112.79 75,19
2 -18.68 -13.92 71.98 72.86 4.79 114.32 76.21
3 -20.68 -11.89 68.96 73.05 -1.63 112.23 74.82
4 -16.76 7.54 72.88 77.16 -1.05 117.05 78.03
5 -i9.60 -10.77 72.42 73,25 .2l3 112.26 74.84
6 -21.22 -10.26 70.22 73.08 -1.17 114, 3 76.07
7 &-21.76 - 9.79 75.54 76.65 -4,74 115.69 71.13
8 -20.46 -10.53 69.84 73.47 -3.26 109.96 73.31
9 -20.87 .- 2-10 64.51 70.74 -2.52 1o6.48 70.99

10 -22.55 - 7.05 70.01 71.63 -4.12 110.07 73.38

-_ -2 -_

r X1P x iX 1 X2 Y I XlY-2/3YY Et -2/3tY E
- ~ 2 2P ___ __________

1 -3.67 -1.89 -0.09 -2.33 0.36 13.85
2 -3.11 -2.32 -1.20 -2.12 -1.68 15.24
3 -3.45 -1.98 -0.41 -2.93 -0.89 15.02
4 -2.79 -1.26 -0.26 -2.58 -o.44 15.02
5 -3.27 -1.80 -0.53 -1.21 -0.80 13.81
6 -3.54 -1.71 -0.29 -2.93 -1.50 15.63
7 -3.63 -1.63 -1.19 -0.80 -0.24 13.55
8 -3.41 -1.76 -0.82 -1.74 0.08 13.33
9 -3.48 -2.02 -0.63 -3.24 -0.13 i4.o8
0 -3.76 -1.18 -1.03 -1.69 -0.88 13.94

Fitted Equations

1. X w 13.85- 3.7X1 - '.89X2- 2.33X, + 0.36k2 - o.o9

2. Y = 15.24 -3.1Jx- 2.32X 12.2X1 2 - 1.68X22  1.20X1X

3. Y g 15.02 - 3.45X, 1 .98 72 2.93XJ12 - 0.89X22 o.41 lx 2

4. Y - 15.02 2.79X1 - . 2.58 2  0.x o.44x, 2 , 0 .2 6x1k

5. Y = 13.81 3.27k - 1.80x2 - .1 2  0 0,80 2  o.53XzX
6. Y 15.63 3.54X1  

1.71X 2.93X1  -- 50k 0.29X1 X2
7. X = 13.55 .3Xl - 1.63.6- o.X 2 

- 0.4 2 
- 19X1 X2

8. y = 13.33 3. i -3,4x 1.74X, 2 + 2 o.s8 x

9W y 14.0 - 3.48X - 2.02&2 - 3.24X1
2 - 0.13X2 2 - o.63XjX

0. T 13.94 - 3.76X1 - 1.- .!. 1.6 12 - o.88V - 1.0X



2. Analysis of Variance

Due t b0  Due to Due to
Linear Quadratic

..... y2  .f. 9 d. . Terms- d.f. T erms *-* d.:.. Residual d.-T.
1! 1.052d. 6645 9 1, 413.5093 1 T'102.2062 1-.17 = T i211,564.4452 9 1,452.118o 1 90.4514 2 2.2938 3 1.5819 3
311,517.589-7 9 1,399.-5081 1 94.8391 2 19.4005 3 3.84o 3
4 1,593.6913 9 1,522.3003 1 56.2916 2 13,9154 3 1.1840 35 1, 49.5022 9 1,400.2564 1 83.3589 2 5.35 3 3.5604 3
6 1,562.8033 9 1,446.7880 1 92.5927 2 21.9236 3 1.4990 37 1,592.1697 9 1,487.1307 1 94.89o3 2 6.9962 3 3.1525 3
8:1,444.884-4 9 1,343.4668 1 88.2h88 2 8.6902 3 4.4786 3
91,580.6790 9 -1,259.7767 1 96.9945 2 2.6141 3 1.2937 3
-0 -1,455.5585 9 1,346 .1561 1 93.034 2- 11.4534 3 4.9148 3

Quadratic Residual Quadratic Terms
Mean Square Mean Square F3, 3 Ratio Significant

at 95% Level
__________ of Sismficance

1 3.7159 0.6738 5.51 No
2 6.7646 0.5273 12.83 Yes
3 6.4668 1.2807 5.05 No
4 4.6385 0.3947 11.75 Yes
5 1.7755 1.1868 1.50 No
6 7.3079 0.4997 14.62 Yes
7 2.3321 1.0508 2.22 No
8 2.8967 1.4929 1.94 No
9 7.5380 o.4312 17.48 Yes
0 3.8178 1.2726 3.00 No

* Linear Terms: (iXly) 2 + (yXy) 2

6 6

* Quadratic Terms: (IX1
2 r - 2/=) 2 , (x22 - 2/=n')2  ,

To be signfieant, the F ratio of 9.28 must be
95 3,3

exceeftd
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3. Predicted- Points -frcm Fitted Equations -

1) 13.75 6) 13.32 1) 12.32 6) 12.42 1)6.23 6) 5.66O 2) 13i43 7) 15.70 2) 11.24 7) u.68 2) 4.81 7) 6.o6
3) 13.08 8) 14.14 3) 12.15 8) 11.65 3) 5.36 8) 5.68
4) 153.79 9) 12.80 4) 13.32 9) 11.93 4) 7.69 9) 4.58
5) -13.80 10) 14.98 5) 2.-1.21 o1) 11.88 5) 6.20 1o) 5.140

--1) -15.19 6) 16.24 1) 13.85 6) 15.63 1) 7.85 6) 9.16(\ 2) 16.23 7) 16.38 2) 15.e24 7) 13.55 2) 10.01 7) 9.12
3- 15.54 8) 15.00 3) 15o2 8) 1533 m 3) 8.64 8) 8.18

2 4) 15.-23 9) 1 .32 ) 15.02 9) 14.08 I) 9.65 9) 7.36
I) 15.87 10) 16.01 5)1.81 10) . 13.94 5) 9.33 10) 8.49

1) 17- 35 6) 16.16 1) 16A0 6) 15.84 1) 10.19 I6) 9.66
2) 15.67 7) 16.58 2) 15.88 7) 14.94 2) 11.85 7) 11.o7

Q 3)1622 8) 16.02 3) 16.1i 8) 15.17 3) 10.14 8) o.84
5.) 179 9) 15.58 4) 5.84 9) 15.97 4) 1o.T3 9) 9.88
6) 1.34 1o) 15.28 5) 14.81 10) 14.24 ) 18 ) 9.82

4. Standard Errors

1) Y 1 .10 10.19 15.19 -13.85 7.85 13.75 12.32 6.23*1 1I -- I --- 1 . 2 6 6

;Y3 16.24 9.93 15.7 13.40 7.71Q 13.77 1.2 66
Y-y 0. 4 U. & 0.5b 0.4 0.14 0.02 0.4 0.3b

-j636 ;054550~ 0.739

2)(.-)l -0 .6 0.55 o.43 0.19 o.6o o.45 0.39 0.07

S== 155586 0.720

3)(Y-y) 0.25 0.35 1.29 0.71 0.60 0.71 0.45 0.25

S= 83P 1.O-



4. Staniderd Errors (continrued)

4i) (Yy) 0.66 0.32 0.30 0.58 0.29 0.02 0.07 0.0-11.

S=TI __ =0.593

5) (Y..y) jo.6s 0.76 0.51 0.69 1.20 0.640 0.03 0.46

3= - A-99 1.088

6) (Y-y) 0.69 0.45 0.08 0.6 0.55 0.15 0.06 0.08

s= ____ = ~0 0 .687

7) (Y-y) 1.13 0.43 -0.61- 0.69 0.07 0.08 0.46 0.37

I s -- 3=0.4

8) (Y-y) 0.77 0.88 0.88 0.28 1.18 0.75 0.46 0.29

S= __T.7 Q =902 1.9a1

9) (Y-y) 0.06 0.23 0.12 0.57 0.67 0.05 0.50 0.44

I ~ ~1.908 46-4502- -0.656

10) (Y-y) 0.13 0.39 1.39 0.95 o.44 0.88 0.82 0.03

8= 77743- 1.244



J

5. omparison of Standard Deviations an tnadErrorS

- -- - Vriance - - -

sta. Std. (Sta. 2 (Std. Variance
Sam~ Error Dev * ttr Dev.)2 Ri * 2 S

Ple -SP -So.

2. 0.739 1.054 0.54550 1.21022 0.49 No 0.92198 0.960
2 0.720 0.995 0.51887 0.98978 0.52 No 0.83281 0.913

3 1.077 0.883 1.,16077 0.69433 i.67 No 0.,84981 0.922
4 0.593 1.085 0.3 5180 -1.17772 0.30 No 0.90241 0.950

5 1.088 1.-129 1.18293 1.27372 0.93 No 1.243461 1.115
6 0.687 0.788 0.47230 0.62088 0.76 No 0.57135 04756

7 .94 1.488 0.88993 2.21483 0.40 NO 1.77320 1.332

8 1 .221 0.546 1.49023 0.29798 5.00 No6 0.6954o 0.834

9 o.656 1.012 0.43027 1i.02458 0.42 INo o.82648 0.909

2,0 1 244 0 .739- 1.5 4830 __. 54662 2. 83 NO 0.8051 0.938

* lwm F_ Rai-at'rC arison-of Variance

Reject the hypothesis that the variances are equal, at the 95% level
of significance, if the variance ratio falls outside the region of 6.60 to

ox6 No means no

dFf. - 6.60, 1 of)=.68)

significant difference, permitting pooling of the variances.

** alcltions for Pooling Variance SMle 1

Sp2 = 3(d.f.) x 0.54550 + 6(d.f.) x .1.11022 0.921.98
9 (9 _R'

Sp VT.921 0.960
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6. RelipbilltyBoundy Euations

( Based on Y-Im where K =5.414 for N ul-6 9 and for reliability)

\standards of 99.90% at 95% confidence.

1. 3.67X1 + 1.89X2 + 2*33k - 0.36)V2 + 0.09X1X2 -13.85 m.5.20 ml0.00=-l.35

2. 3.=21i + 2.32X2 + 2.12 + 1.68X2
2 + l.2OXx 2  15.24 - 4.94 "o.oo= 0.30

3. 3. 4 5kX + 1.98X2 + 2. 93 x 2 + 0.89X 2 + 0.41 "k m 15.02 - 4.99 o-0.0 0.03
4. 2 . . 26. + 21.58_2 + o.44X2  + 0.26x1X2 = 15.0-. -1o.00=-o.2

5. 3.27X 1.80X2 + 1.l 2 + o8o--2 + 13.8-- 1 w v - 6.04 .-10.o-.,23

66 , •.1 2 + 2.93X + 1.50x 2 + o.29xx 2 - 15.63.- 4.09 -10.0= 1.54

7i 3.63x-. + .63x2 + 0.8ox 1 + 0.24X22 + 1.19XX 2 w 3.55 7.m.21 .10.00=.3662 1 2

22
8. 3.46x1 + 1.6x2 + 1.74X m o.o8X2 + 0.82X X = 13-33 - 4.52 -0.00=-1.19

1 12
:9. MI4X, + 2.09X 2+ 3.24X, 2 + 0.3X 2 + o.63x X = 14.08 -4.92 -10.oom-0.84

10. 3.76X, + 1-18X2 + 1.69X1 2 + 0.88X 2 + 1.03X 1X 2 f 13.94 -5.08 -looxo=-114

"A" Sampl Re-blt onay Equation for Infinite Munber of Saz~1es

3.24x + 1.69x2 + 2.13X, + 0.94x 2 + o.431 x = 14.61 - 5.41 -10.0o=.0.80
1i 2 1.2 6
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E. Aayit Of "B" Sample Data
1. Coefficients of Fitted Epuat!ons foZ "B" SaIes

aaple IX 1Y X2Y X1
2y X22y lXlX2 Y __ 2/3 .y

1 -40.74 -19.91 141.40 150.03 -0.93 225.00 150.00
2 -40.41 -24.62 141.73 143.54 -8.13 226.21 150.81
3 --40.41 -19.07 143.81 147.79 -5.43 229.77 153.18
4 -35.75 -18.67 14331- 151i81 -483 231.04 154.03
5 -41.91 -20.29 140.03 142.61 -4.62 218.29 145.53
6 -38.88 -15.99 142.86 145,63 -0.97 228.41 152.27
7 -43.87 -19,89 147.07 151.27 -7,64 230.66 153.77
8 -4.52 -22.98 141.68 146.74 -6.19 2,20.39 146.93
9 -38.35 -22.80 140.35 146.90 -8.56 224,63 149.75
10 -1.68 -16.28 140. i25.0 -713 3. 66 149,a ....

_X.1y I V 2XlX2y -IX 12Y /yX 2 .2/35Y - YiW 2 XY a2/3bll-.C/3b2

1 -3.40 -1.66 -0.12 -2.15 0.01 13.93
2 -3.37 -2-.05 -1.02 -2.27 -1.82 15.29
3 -3.37 -1.59 -0.68 -2.34 -1.35 15.23
4 -2.98 -1.56 O.6o 2.68 -0.56 14.99
5 -3.49 -1.69 -0.58 -1.38 -0.73 13.53
6 -3.24 -1.33 -0.12 -2.35 -1.66 15.37
7 -3.66 -1.66 -o.96 -1.68 -0.63 14.35
8 -3.54 -1.92 -0.77 -1.31 -0.05 13.15
9 -3.20 -1.90 -1.07 -2.35 -0.71 14.52

1o -3.47 -1.36 -0.89 -2.18 -1.02 1 1456

Fitted Equations

1. Y = 13.93 - 3 40kX - 1.66x2 - 2.15XL2 + o.ox 2
2 - 0.12X, X2

2. Y = 15.29 - 3.37X - 2 .05X2 - 2.27X1
2 -1.82X22  - 1.O2XIX2

3. Y = 15.23 - 37X1 - 1 59X - 2.34J 2 - 1.35 2  - 068XlX2
4. y = 14.99 - 2,9x 1 -. 56x - 2.68x1

2  0.56X 2 - o.6 oxik

5. Y 13.-53 3.9X - 1.69X - 1.38X1
2 - 0.73X22 - 0.58X!X2

6. Y -15.37 - 3 2 4  1.33X2 -2,35X,
2 - .%X22  - .2X

7. Y -14.35 3.66X1 - .66%2 - 1.6x 1
2 - o.63X 2 

- o.96x 2

8. Y 13.15 ,3.54X - 1.92 2 - i.3,3 - 0.o5X - - 777x2

9. T 14-.52 3.20X, 1.9oX2 2.35X 2  o.7X 2
2  1.07XX 2

10. Y = I4.56 347X1 - 1 .36X 2.1 - .-
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2. --Analsis of Variance

Due to b0  Due to Due to

2 =z Linear Quadratic
S7Ye d.f. d.f. Terms _ - d.f. -Terms_ - d.f._

1 3,007.109b i 2,U2I50 1 171-3463 2 18.5963 3
2 3,081.1029 18 2,842.8313 1 186.5927 2 42.0869 3
3 3,142.9913 18 2,933.0141 1 166.3861 2 32.8978 3
4 3,143.2496 18 2,965.5268 1 135.5526 2 32.8778 3
5 2,847.5505 18 2,647.2513 1 180.677 2 12.3622 3
6 3,093.2109 18 2,898.3960 1 .147.2V9 2 33.270 3
7 3,181.1040 18 2,955,7798 1 193.3491 2 20.0812 3
8 2,915.4713 18 2,698.4307 1 194.6692 2 11.6891 3
9 3,027.2397 18 2,803.2576 1 165.8802 2 33.2798 3
10 2,989.3140 18 2,779.0998 1 166.8550 2 29.1 618 3

xperi - Lack Quadratic Residual
mental of Mean Mean

amvle- Residual- df, rror d.f. -Fit d.f. Square
.5 12 4.3716 0.2936 4 6.1994

2 9.5920 12 8.1818 8 1.4102 4 14.0290 0.7993
3 10.6933 12 8.9410 8 1.7523 4 10.9659 O.8911
4 9.2924 12 7.2773 8 2.0151 4 10.9593 o.7744
5 7.2593 12 3.9212 8 3.3381 4 4.1207 O.60o49
6 14.2600 12 8.2075 8 6.0525 4 11.0923 1.1883
7 11.8939 12 6.6664 8 5.2275 4 6.6937 0.9912
8 10.6823 12 8.8568 8 1.8255 4 3.8964 0.8902
9 24.8221 12 18.7429 8 6.0792 4 11.o933 2.0685

10 13.8974 12 7.7797 8 6.1177 4 9.82o6 1.1581

Experimental
Lack of Fit Error

Sample F3 ,1 Ratio * Mean Square Mean Square F1 , 8 Ratio

1 15.94 Yes 0.0734 0.5465 0.13 No
2 17.55 Yes 0.3526 1.0227 0.34 No
3 12.31 Yes 0.4381 1,U76 0.39 No
4 14.15 Yes 0.5038 0.9097 0.55 No
5 6.81 Yes 0.8345 0.4902 1.70 No
6 9.33 Y.!s 1.5131 1.0259 1.47 No
7 6.75 Yes 1. 3069 0.8333 1.57 No
8 4.38 Yes 0.o4564 1.1071 0.41 No
9 5.36 Yes 1.5198 2.3429 o.65 NO

10 8.248 Yes 1.294 0.9725 1 L57 No
*Linear Terms: (Xjy) 2  + ( X2 _)2

**Quadratic Terms: (XP 1
2 - 2/3-1) 2  ( _ _ 2/32Y) 2 + ( xjzg)R

***Are quadratic terms significant at the 95% level of siga4ficance?
To be significant the F 3 ,12 ratio must exceed F. 9 5 3, 1 3.49

***Is the lack of fit term significant, at the 95% level of sitnificance
.icoesoto -thet error? To be iift - F 4,8 rdtio

zat k~ee F -95 4 6 i- F 63 1



3. -Predicted Points from fB'1 _$wple Fte d qutin

1) 13.65 6) 13.39 1) 12.28 6) 12.38 1) 6.61 6) 6.67
2) 13,54 7) 15.00 2) alih2 7) 12.06 2) 4.76 7) 5.76
3) 1-4.00 8) 14.18- 3) 12.29 8) 111.8 3) 5.90 8) 5.56
14) 13.77 9) 13.83 14) 12.87 9) 11.591 4 6.61 9) 5.29
15)13.80: 10)14.36 15) uion 10) 12.181 5 5.66 10) 5.64

1) 15.18 6) 16.26 1) 13.93 6) 15.37 1) 8.38 6) 9.78
2) 16.39 7) 16.33 2) 15.29 7) 14.35 2) 9.65 7) 9,Olx2 3) 16.26 8) 15,638---i- 3) 15625 8) i15 3) 9.52: 8) 8.30
4) 15.29 9) 15.37 14) 14.99 9) 14.52 4) 9.33 9) 8.97

5) 15.64 10) 15.85 5) 13.53 10) 14.,56 5) 8.66 10) 8.91

1) 16.73 6) 15.81 1) 15.60 6) 15.04 1) 10.17 6) 9.57
2) 15.60 7) 16.40 2) 15.52 7) 15.38 2) 10.90 7) 11.00O 3) 15.82 8) 16.48 3) 15.47 8) 15.02 3) 10.44 8) 10.94
14) 15.65 9) 15.49 4) 15.99o 9) 15.n 14) 10.93 9) 11.2:3
5) 16.02 10) 15..30 5) 1.49 10) 1.90 5) 10.20 10) 1o.14

15 _ _ _ __101490

4. " Sample Standard Errors

1) y 15.60 1.7158139 838 36512.28 6.61
Y 16.94 9.93 15.77 13.40 7.71 13.77 11.92 6.61

14.74 10.20 1i4.83 14.12 9.14 13.54 12.48 6.74
(Y-y) 1.34- 0.24 0.59 0.53 0.67 012 --0.36 0.00

0.86 0.03 0.35 0.19 0.76 0.11 0.20 0.13

F4~) - . 0 8 N7.41 -0.648
IV 3-

2) (Y-y) 0.92 0.40 0.59 0.24 0.96 0.34 0.57 0.02
1.16 0.08 0.45 1.25 1.82 0.15 o.18 0.60

S a N* O.7Wul& w 0.935

614



3) (T-y) 0.89 0.05 0.57 0.92 1.48 1.63 0.3I 0.29
1.13 0.50 0.53 0.44 0.82 0.82 0.39 0.38

81 o.-oVo.96 0 o98 o

14) ( -Y) 0.81 0.12 0.6 0.61 0.0 0.00 0.52 4.o4
0.27 0.16 0.714 1 0.39 0.63 0.8,4 1.70

5) ('Y-) 0.33 1.42 0.714 0.97 0.53 0.40 o.o7 1.00j0.54 0.48 0.35 0.28 1.09 0.10 0.45 0.30

I s - U0.8133

6) (i-q) 1.149 0.36 0.06 0.37 0.07 0.08 0.02 1.09
1.22 0,58 0.99 0.98 2.31 0.16 1.07 0.26

I . 1.0295 1.2. 1.129

7) (Y-,) I 0.69 0.27 0.66 1.49 0.18 0.78 0.84 0.67
' 1.17 1.13 0.54 1.49 0,29 0.09 1.01 0.36

s. . - .018

8) (T-y) 0.62 0.78 o.5o 0.46 1.30 0.79 0.93 O.1a
1.26 0.66 0.40 0.46 0.39 0.69 1.56 0.36

- , 0.972

9) (1-y) 0.32 1.58 1.17 1.o 0.94 1.08 0.52 1.15
1.15 1.o6 0.89 1,37 2.65 1.77 0.05 0.02

S. - 1 -. 474

10) (T"Y) 0.79 on 1.23 0.33 0.02 1.50 1.12 0.27
0.80 0.32 0.82 0.28 1.96 0.43 1.04 0.70
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5. _0omparion of *B'1 Samle Standard Deviations -and Stanftw4__Rro

- Variance -

Std. Std. 2.2 Variance 2
Sample Error Dev. (Std.Error)2  (Std.Dev.) Ratio * S S

1 06648 0.887 0.42007 0.48648 0.53 No 0.61854 0.786
2 0.935 0,989 0.87445 0.97779 0.89 No 0.93043 0.965
3 0.983 0.665 O,96692 06,4202 2.19 No 0.68260 0.826
4 0.918 1.021 0.84325 1.04261 0.81 No 0.95124 0.975
5 0,813 1.067 0.66119 1.13809 0.58 No 0.91951 0.959
6 1-129 1.108 1.27541 1,22775 1.04 No 1.24959 1.118
7 1.018 1.313 1.03631 1.72342 0.60 No 140849 1.187
8 0.972 O,830 094434 068952 1.37 No 0.80631 0.898
9 1.474 0,915 2.17310 0.83784 259 No 1.44983 1.204

10 1.104 0.708 1.21991 0.50072 2.44 1. 1No 0.83035 0.911

* F Ratio Test for Comarison of Vceariae

Reject the hypothesis that the variances are equal, at the 95% level of
significance, if the variance ratio falls outside the region of 3.20 to
0.293 = 3.20 1 = 0.293). No means( 1I,13 dof.) F

F.975(13,11l d.f.)

no significant difference, permitting pooling of the variances.

6. "B" Sampie Reliability Bounda Equations

Based on Y - KS where K - 4.171 for N -30-6- 24 and for relia-)
bility standards of 99.9% at 95% confidence.

1, 3,40L. + 1.66X2 + 2.1,X12 .- o.o 2  + 0.1212 - 3.93 - 3.28 - 10.00-0.65

2. 3.37X, + 2.o52 + 2.27X12 1.8222 +.02Z12 -15.29- 4.03 - 10.00-1.26

3. 3.37X, + 1.5912 + 2 ,3 1.35X 2 + 0.681112 -15.23 - 3.145 - 10.00-1.78

4. 2.98 .+ 1.562 + 2.68112 + 0.56122 + 0. 60 12 -14..99 - 4.07 - 10.00-0.92

5. 3.49X + 1.+692 1.38-12 + 0.73X22 + 0.58ik -13.53 -4 1.0 - 10.0--o.,47

6. 3.24-x1 + 1,3312 + 2.35 2  1.612 + 0.121112 -15.37- 4.66 - 1O.O0-O.71
7. 3.66X, + 1.6612 + 1.68112 0 o.6-2 0.96X1X2 -P14.35. 4.95 - 0.00-.o
8. 3.54x1 + 1.922 + .31)T 2 + 005X2

2 + 0.-71 -13.7 - .75 - 10.oo,-o.6o
9. 3.2X.+ 1.+90X2 + 2.35X12 e oM 2. 1.07x1i2 -L-4.52 - 5.02 - 10.oo.-o.5o

10. 3.147X., + 1.3612 + 2.181 2 + 1.o2X 2 +6 0.8912-J~5 .0-1.007_. 2 o89xix =-14.56 - 3.80 - 10.00-0.76

"B"Samle Religaiit Mounar Equation for InfiniteNu eroSa le
o. .. .x 2. 2. o24 + 00312 "1L4

A'9 -66



F. .Analysis "C Samp Data

1. Coefficients of Fitted EMa o ts

sa. .e lx-y t X2y XX2y .X.. . 2y XX2y y 2/32Y

1 -80.23 -40.56 287.81 301.68 - 2.45 458.58 305.72
2 -80.18 -"4.A6 285.44 294.18 &-.66 455.90 303.93
3 -76.43 -39,76 290.69 297.82 - 7.05 460.27 306.85
4 -75.94 -38.61 288.26 302.47 - 7.53 459.29 306.19

-81.54 -39.81 280.58 987.91 - 7.29 42.80 295.20
6 -4.60 -33.54 287.32 293630 0.79 456.76 304.51
7 -84.72 -38.78 286.46 294.98 - 7.92 455.05 303.37
8 -82.79 -44.82 284.63 290.62 - 7.02 445.53 297.02
9 -75480 -41.2-7 280.56 294.83 -12.02 450.87 300.58

10 . -79,.... -35.14 284.19 94. -9.59 42.29 301.53
-_I -A--79--1 - 29- 53

lXly '*X2 - 1 2  1x2 j Y22 Y - 2
Sample i6 -u-- i3

1 -3.34 -1.69 -0.15 -2.24 -0.51 14.57
2 -3.34 -1.84 -1.10 -2.31 -1.22 15.02
3 -3.18 -1.66 -0.44 -2.02 -1.13 14.88
4 -3.16 -1.61 -0.47 -2.24 -o.47 14.56
5 -3.4o "1.66 -o.46 -1.83 -0.91 14.13
6 -3.11 -1.4o -0.05 -2.15 -1.4o 15.o6
7 -3.53 -1.62 -0.50 -2.11 -1.05 14-.75
8 -3.45 -1.87 -o.44 -1.55 -0.80 13.94
9 -3.16 -1.72 -0.75 .2.50 -0.72 14.67
10 -3.30 -1.46 -0.60 -2.17 -0.89 i4.61

Fitted Eqltions

1. Y 14.57 -3.34 x1  1.6x - 2.24x.12 - o.5!q - .OlXX2

2. " 15.02 3.34X1 - .4 .2 - 2.1 - 1._--22  ,

3. Y - 14.88 - 3.18x " 1. 66X 2.o2X1
2 " 1.13X2 - o.44XX 2

4. Y 14.56 - 3.16x1  1.6ix2 - 2.24x1 2 - o.473x - o.47XX 2

5. Y - 14.13 3.4ox1 - 1.66x - 1.83X12  0. 91:v o.4xx 2
6. T w 15 .06 - 3.,x 1 . 1Q.4  - 2.15 2 . -1.1-o% 2  o.x05X 2
7. y - 14.--7 3.53x1 w 1.62x - 2.lX1

2 - 1.05 0- o.5oX 2

8. y a 13,94 -3.
4 X1 - 1.872 - 1.55X,2  0.OX2 -o.4xx2

9. T - 14.67 3.16X. 1- l ,7X - 2.50 2 ".727X 2
2  0.75Xik

10. 1- 14.61 .30x1 .- 1.46 - 2.17 2 w 0.89 2% 2 
- o. 6 OXi
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2. -Pradicted-Paints-from-"C'L-,am-p1 Fitted Ewation
- -- - - E a1

O 1) 13.64, 6) 13).26 i)12.38 6) 12M5 1) 6.64 6) .94I
2) 14.09 7) 14.00 21.96 7) 12.08 2) 5.19 7) 5.94
3) 13.71 8) 13. 62: 3) 12.10 8) 1-1.27 3) 6.45 8) 5.84
4) 3.88 9) 13.64 4) 12.48 9) 12.33 I4) 6.60 9) 5.W
15) 13.5 1o0),13.8 51.55 10) 12.24 5) 5.86 10) 6.a8

1) 15.67 6) 16io01  14i,57 6) 15.05 H 1) 8.99 6)97Q ) 16.04 7) 16.i61 2) 15.02 7) 14.74 2) 9.36 7) 9.iO
3) 16.06 8) i5.85 3) i4.89 8) 13.94 3) 9.68 8) 8.95
4) 15.49 5) 15.33 4) 14.56 9) i4.6- 4) 9.15 9) 9.01

X2 5) 15.70~ 10) 1 -5.74T 14.13 10 h1.6o 5) 8.0 10) 9.i14

1) 16.1,0 6) 15.96 1) 15.76 6) 15.05 1) 1034i 6) 9.84O 2) 15.55 7) 16.24 1 2) 15.64 7) 15.-32 2) 11.09 7) o.18

.13) 16.15 8) !6.48 ) 15.42 8) 15.01 3) 1o.65 8) 1o.46
4) 16.16 9) 15.58 4) 15.70 9) 15.67 4) 10.76 9) 10.76
5)1 5.98_10) 15.72 5)1.7-1.5) ) 110 ) 10.32_

0 0 0

3. "C" Sample Standard Errors

i) 1 .76 10.34 15.67 1._7 8.99 14.6 2. s 6.64
16.94 9.93 -15.77 13.40 7.71 13.77 11.92 6.61

y 14.74 10.20 14.83 14.12 9.14 13.54 12.48 6.74
16.94 9.63 16.34 15.13 9.31 15.02 11.58 6.07
15 90 10.29 16.34 15.4 9.36 12.65 12.o8 8.10
--1*b 0.41 0.10. 1.17 128 0.13 0.46 0.03

(Y-y) 1.o2 o.14 o.84 o.4 0.15 0.10 0.10 0.10
1.18 o.71 o.67 0.56 0.32 1.38 0.80 0.57
0.23 0.65 0.67 0.88 0.37 0.99 0.30 1.46

6 ,Yw;) =8 = O'O. 99 -005
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3. "C" S~I~p SAtandard Errors (cOntinued)

2) (Y-y) 0.80 0,21 0.24 0.03 1.25 o.m 1.1 o.,45
1.28 0.27 0.80 1.52 1.53 0.70 0.72 0.17
0.14 1.09 0.7O 0.83 0.59 1.05 1.58 0.96
0.30 0.58 0.05 0.04 o.24. 0.20 o.11 0.43

s = O 3 = 0.856

3)(Ymy) 0.94 0.16 O.77 0.58 6A. 134 0 .5 00.oo84
1.08 0.29 0.73 0.78 0.66 1.11 0.58 o.17
0.49 0.25 0.4-3 0.12 1.36 1.52 0.02 1.12
0.36 o.0 0.11 0Iii 0.78 i.09 1.5o 0.98

s4= 1'9-= - 0.922

0.52 0.29 0.56 i.,O. 0.2. 0.11 0.91 1.05
4)(Ywy) 0.56 0.33 0.54 0.97 0.57 0.74 1.23 1.69

0.74 0.89 1.39 0.14 1.40 1.17 0.77 0.28
0.54 0.57 0.43 0.66 0.15 0.80 1.09 0.65

s 271.4347 -38 0.891
27

0.71 1.52 0.68 0.37 0.77 0.18 0.37 0.8O
5)(Y-y) 0.92 0.38 0.41 0.32 1.33 0.32 0.89 0.50

0.19 o.56 0.22 o.o 0.53 o.94 1.4 0.83
0.03 0.39 0.92 f.01 0.95 1.51 o.61 0.26

S~- o ~t~5 .838

6)(.TY) 1.48 0.63 0.31 0.05 0.08 o.21 o.11 1.36
1.23 0.85 0.74 0.66 2.30 0.29 1.20 0.53
0.62 1.03 1.06 0.95 1.77 0.60 2.08 0.62
1.65 0.65 0.31 0.83 1.76 0.02 2.02 0.22

S 41M W = 1.183
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7) (TWO 0.75 -1.09 0.83 1.88 0.09 1.78 o.86 0.49
1.23 0.31 0.3T 1.10 0.358 1 #09- 1.03 0.18
0.62 1.0 0.08 0.37 0.06 0.23 0.75 1.82
0.18 0.64 1.,22 1.72 0.0'5 1.13 0.18 1.16

94.8-3- j.06935i 1.031

o.61 1.26 0.0o3 0.335 1.95 0.23 0.84 0.13
8)(Y-y) 1.27! 0.18 0.07 1.25 0.26 1.25 -1.65 0.08

0.37 0.0). 1.09 -1.31 0.47 0.32 0.37 1600

0.26 0.88 0.56 0.51 0.16 1-48 0.33 0.42

aS26 st NF__ \' 3 - 0.9-16

0.36 1.U1 1.13 1.16 0.98 0.89 0.20 1.,68
9)(Y-Y) 1.U1 1.53 0.85 1.22 2.61 1.96 0.37 0.55

0.71 0.06 1.67 0.97 0.94 0.4.4 0.22 0.22
1.64 0.11 -0.82 1.21. 0.14 0.84. 1.36 0.83

S =3195 Nr.49 - 1.202

10)(Y-Y) 1.07 0.89 1.12 0.29 0.21 1.88 1.18 0.81
0.52 0.50 0.71 0.32 1.73 0.05 0.98 1.24
0.98 0.69 0.77 0.26 1.35 0.78 0.30 0.72
0.15 0.60 0.144 0.96 0.65 0.18 0.67 0.31

S R3.1~57 0.926

=270



4. Coftarison- of- "-C", -SsMle Standard- Deviations -and Standard Error$-

Variance
Std. Std. (Std, 2 (Std. 2 Variance

le Error De. Error') 2 e V:)2 2

1 0.805 0.75 0.64T99 0.51193 1.2T No o.57996 o.T62

2 0.356 0.834 o.73348 0.69610 1.05 No o.i114 9 0.845

3 0.922 1.043 0.84991 1.08686 0.78 No 0.96839 0.984

4 0.891 0.921 0.79388 0.8484 o.94 ho o.89116 0.906

5 0.838 0.985 0.70219 0.9713 0.7 No 0.83666 0.915
6 1.183 1.035 1.39791 1.07163 1.30 No 1.23477 1.111
7 i.03i i.164 1.06235 1.35407 0.78 go 1.20821 1.099
8 0.916 0.850 0.83843 0.232 1.16 No 0.78109 0.884

9 1.202 0.917 1.44398 0.84103 1.72 No i.1-4251 1.069

10 0.926 0.866 0.85766 0.75011. 1.14 No 0.80389 0.89T
O- ---- ----- a -- -a- - - -

F Ratio Test for CapariSon of Variance

Reject the hypothesis that the variances are equal, at the 95% level
of significance, if the variance ratio falls outside the region of 2.17 to
0.11

.((F.9 75 ( 27 , 2 , d.f.) + 2.17, 1 o 0.1461))

Fo9 5 (2 d,2 d.f.) o

No means no significant difference, permitting pooling of the variances.
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5. "C" SamnTe Reliability Boundry_ Equations

Based on Y-KS where K= 3.731 for N 60 - 6 = 54 and-for reliab ty\( Standards of 99.9% at 95% confidenode./

2 2
1. 3,34X + 1.69x + 2.24X + 0.51X- + 041%X -c 14.57 2.84 -0,00 1.73

S 1 2 12

2 2
2. 3,34X + 1.84x + 2.31X + 1.22 + 1.0io X = 15.02 - 3.15 10.o0, 1.87

1 2 ~1 2 1
2

3. 3.11 + i.66X + 2.0 2 + 1.11 + 0.46 X X - 14.88 - 3.67 -10.00- 1.2

1 2 1 2 1 2
4, 3.16x + 1.61X + 2.24X + 0.47x + 0.051 X = !5.56 3.38 -i0.00i 1.18

1 2 1 2 1 2

74 5.50X + i.66X + 2.,83X -0+10X2+mxx 1.5-41 100-06
2 212

5. 3.45x + 1.8x + 1.83X2 + 0.911 + O.6 X 1.13 3.4 -10.00= 0.72
1 2 1 2 12

2 2

6. 3.16X + i.72x + 2.50X + 1 .1O01 + 0.05X 1X 2 15.06 - 3,35 -10.00- 0.91

1 2 1 2 1 2

.3.5x + 1.69x + 2.13 2+ 1.05x + o.40x x 14.75 - 3.i0 -10.00= 0.65
1 2 1 2 12

8 5 +12 0.80X + O.X = 13.94 3.30 -10.00= 0.641 2 1 2 12

9. 3.161 + 1.721 + 2.50X + 0.721 + o.75x x = 14.67 - 3.39 -10.00= 0.68
1 2 1 2 12

2 2
10. 3.301 + i.46X + 2.171 + 0.69X + 0.601 X = i4.6i - 3.35 -10.00- 1.26

1 2 1 2 12

"C" Ssnp~e Reliability Boundary Equation for Infinite Number of Swrples

3.24X + 1,691 + 2.131 + 0.94X1 + 0.431 1 = 14,.61 - 3.73 -10.00.0.88
1 2 1 2 12
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